Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 83(2): 262-9, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14706455

ABSTRACT

Our previous study described the amplification of a genomic sequence containing exon 9 of CFTR in the human genome. Here we report that this CFTR sequence is part of a large duplicated sequence unit, provisionally named LCR7-20. Through successive screening of two human chromosome 7-specific cosmid libraries to construct a cosmid contig, we assembled two sequenced BAC clones into a single contig containing a prototypic LCR7-20 unit. Subsequent searches of existing human genome sequences identified additional six copies of LCR7-20-like sequences with more than 90% sequence homology. Additional genomic clones containing LCR7-20-like sequences were then isolated from total genomic BAC and PAC libraries. Restriction fragment analysis and limited sequencing data indicated that there could be around 30 copies of LCR7-20-like sequences in the human genome and that the average region of homology could extend over 120 kb. As indicated by fluorescence in situ hybridization analysis, LCR7-20-like sequences are dispersed on different chromosomes, mainly in the centromeric and pericentromeric regions, and some may exist in tandem copies. Our study also indicates that many genomic regions containing LCR7-20's either have been misassembled or are missing in current versions of the human genome sequence.


Subject(s)
Chromosomes, Human, Pair 7 , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Duplication , Genome, Human , Blotting, Southern , Contig Mapping , Databases, Nucleic Acid , Humans , In Situ Hybridization, Fluorescence , Sequence Alignment , Sequence Homology, Nucleic Acid
2.
Mol Biol Evol ; 19(12): 2199-210, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12446811

ABSTRACT

Equilibrative nucleoside transporters (ENTs) are integral membrane proteins which enable the movement of hydrophilic nucleosides and nucleoside analogs down their concentration gradients across cell membranes. ENTs were only recently characterized at the molecular level, and little is known about the tertiary structure or distribution of these proteins in nonmammalian organisms. To identify conserved regions, residues, and motifs of ENTs that may indicate functionally important parts of the protein and to better understand the evolutionary history of this protein family, we conducted an exhaustive analysis to characterize and compare ENTs in taxonomically diverse organisms. We have identified novel ENT family members in humans, mice, fish, tunicates, slime molds, and bacteria. This greatly extends our knowledge on the distribution of the ENTs in eukaryotes, and we have identified, for the first time, family members in bacteria. The prokaryote ENTs are attractive models for future studies on transporter tertiary structure and mechanism of substrate translocation. Using sequence similarities, we have identified regions, residues, and motifs that are conserved across all family members. These areas are presumably correlated with function and therefore are important targets for future analysis. Finally, we propose an evolutionary history for the ENT family which clarifies the origin(s) of multiple isoforms in different taxa.


Subject(s)
Equilibrative Nucleoside Transport Proteins/genetics , Evolution, Molecular , Amino Acid Sequence , Animals , Equilibrative Nucleoside Transport Proteins/chemistry , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...