Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1346328, 2024.
Article in English | MEDLINE | ID: mdl-38352869

ABSTRACT

Single-domain antibody fragments (sdAbs) can be isolated from heavy-chain-only antibodies that occur in camelids or the heavy chain of conventional antibodies, that also occur in camelids. Therapeutic application of sdAbs is often complicated by their low serum half-life. Fusion to sdAb that bind to long-lived serum proteins albumin or IgG can prolong serum half-life of fusion partners. Such studies mostly focused on human application. For half-life prolongation in multiple animal species novel species cross-reacting sdAb are needed. We here describe the isolation from immunized llamas of sdAbs G6 and G13 that bound IgG of 9-10 species analysed, including horse, dog, cat, and swine, as well as sdAb A12 that bound horse, dog, swine and cat albumin. A12 bound albumin with 13 to 271 nM affinity dependent on the species. G13 affinity was difficult to determine by biolayer interferometry due to low and heterogeneous signals. G13 and G6 compete for the same binding domain on Fab fragments. Furthermore, they both lack the hallmark residues typical of camelid sdAbs derived from heavy-chain antibodies and had sequence characteristics typical of human sdAbs with high solubility and stability. This suggests they are derived from conventional llama antibodies. They most likely bind IgG through pairing with VL domains at the VH-VL interface rather than a paratope involving complementarity determining regions. None of the isolated sdAb interfered with FcRn binding to albumin or IgG, and thus do not prevent endosomal albumin/IgG-sdAb complex recycling. Fusions of albumin-binding sdAb A12 to several tetanus neurotoxin (TeNT) binding sdAbs prolonged the terminal serum half-life in piglets to about 4 days, comparable to authentic swine albumin. However, G13 conferred a much lower half-life of 0.84 days. Similarly, in horse, G13 prolonged half-life to only 1.2 days whereas A12 fused to two TeNT binding domains (T6T16A12) had a half-life of 21 days. The high half-life of T6T16A12, which earlier proved to be a highly potent TeNT antitoxin, further supports its therapeutic value. Furthermore, we have identified several additional sdAbs that enable tailored half-life extension of biologicals in multiple animal species.


Subject(s)
Antitoxins , Biological Products , Single-Domain Antibodies , Animals , Humans , Dogs , Horses , Swine , Immunoglobulin Heavy Chains , Albumins , Immunoglobulin G
2.
Vaccine X ; 8: 100099, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34169269

ABSTRACT

Tetanus antitoxin, produced in animals, has been used for the prevention and treatment of tetanus for more than 100 years. The availability of antitoxins, ethical issues around production, and risks involved in the use of animal derived serum products are a concern. We therefore developed a llama derived single-domain antibody (VHH) multimer to potentially replace the conventional veterinary product. In total, 28 different tetanus neurotoxin (TeNT) binding VHHs were isolated, 14 of which were expressed in yeast for further characterization. Four VHH monomers (T2, T6, T15 and T16) binding TeNT with high affinity (KD < 1 nM), covering different antigenic domains as revealed by epitope binning, and including 3 monomers (T6, T15 and T16) that inhibited TeNT binding to neuron gangliosides, were chosen as building blocks to generate 11 VHH multimers. These multimers contained either 1 or 2 different TeNT binding VHHs fused to 1 VHH binding to either albumin (A12) or immunoglobulin (G13) to extend serum half-life in animals. Multimers consisting of 2 TeNT binding VHHs showed more than a 10-fold increase in affinity (KD of 4-23 pM) when compared to multimers containing only one TeNT binding VHH. The T6 and T16 VHHs showed synergistic in vivo TeNT neutralization and, when incorporated into a single VHH trimer (T6T16A12), they showed a very high TeNT neutralizing capacity (1,510 IU/mg).

3.
Biochim Biophys Acta ; 1741(3): 350-7, 2005 Sep 25.
Article in English | MEDLINE | ID: mdl-16126374

ABSTRACT

We have previously shown that polymorphisms in the promoter of the human platelet-derived growth factor alpha-receptor (PDGFRA) gene can be grouped into five distinct haplotypes, designated H1, H 2 alpha, H 2 beta, H 2 gamma and H 2 delta, and that specific combinations of these promoter haplotypes predispose to neural tube defects (NTDs). These promoter haplotypes differ strongly in their ability to drive reporter gene expression in various human cell lines, with highest activity for H 2 alpha and H 2 beta. Here, we show that the haplotype-linked PDGFRA promoter region extends to 3.6 kb upstream from the transcription start site, and contains a total of ten polymorphic sites. For two of these polymorphic sites, i.e. -909 C/A and +68 GAins/del, we observed differential binding of nuclear proteins from human osteosarcoma (HOS) cells. The protein complex binding specifically to -909 C, which is present in all haplotypes except the low activity haplotype H 2 gamma, contained members of the upstream stimulatory factor (USF) family of transcription factors. Furthermore, we identified a protein complex of 125 kDa which bound specifically to the low activity haplotype H1 at position +68 GAdel and may represent an H1-specific PDGFRA transcriptional repressor. The current identification of cis-acting elements in the PDGFRA promoter and the transcription factors that bind them, provides a new strategy for the identification of genes that are potentially involved in neural tube defects.


Subject(s)
Haplotypes/genetics , Neural Tube Defects/genetics , Polymorphism, Genetic , Promoter Regions, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Transcription Factors/metabolism , Base Sequence , Cell Line, Tumor , DNA Primers , Electrophoretic Mobility Shift Assay , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...