Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biomed Opt Express ; 14(11): 5764-5780, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38021123

ABSTRACT

Triple negative breast cancer (TNBC) is a highly aggressive form of cancer. Detecting TNBC early is crucial for improving disease prognosis and optimizing treatment. Unfortunately, conventional imaging techniques fall short in providing a comprehensive differentiation of TNBC subtypes due to their limited sensitivity and inability to capture subcellular details. In this study, we present a multimodal imaging platform that integrates heavy water (D2O)-probed stimulated Raman scattering (DO-SRS), two-photon fluorescence (TPF), and second harmonic generation (SHG) imaging. This platform allows us to directly visualize and quantify the metabolic activities of TNBC subtypes at a subcellular level. By utilizing DO-SRS imaging, we were able to identify distinct levels of de novo lipogenesis, protein synthesis, cytochrome c metabolic heterogeneity, and lipid unsaturation rates in various TNBC subtype tissues. Simultaneously, TPF imaging provided spatial distribution mapping of NAD[P]H and flavin signals in TNBC tissues, revealing a high redox ratio and significant lipid turnover rate in TNBC BL2 (HCC1806) samples. Furthermore, SHG imaging enabled us to observe diverse orientations of collagen fibers in TNBC tissues, with higher anisotropy at the tissue boundary compared to the center. Our multimodal imaging platform offers a highly sensitive and subcellular approach to characterizing not only TNBC, but also other tissue subtypes and cancers.

3.
Nature ; 591(7851): 652-658, 2021 03.
Article in English | MEDLINE | ID: mdl-33588426

ABSTRACT

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Glycolysis , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
4.
Mol Ther Oncolytics ; 18: 382-395, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32913888

ABSTRACT

To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.

5.
J Biophotonics ; 13(7): e202000005, 2020 07.
Article in English | MEDLINE | ID: mdl-32219996

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African-American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time-consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label-free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole-tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.


Subject(s)
Breast Neoplasms , Second Harmonic Generation Microscopy , Triple Negative Breast Neoplasms , Breast , Breast Neoplasms/diagnostic imaging , Female , Humans , Mammography , Spectrum Analysis, Raman , Triple Negative Breast Neoplasms/diagnostic imaging
6.
J Magn Reson Imaging ; 51(5): 1369-1381, 2020 05.
Article in English | MEDLINE | ID: mdl-31654463

ABSTRACT

BACKGROUND: The manual segmentation of intact blood-brain barrier (BBB) regions in the stroke brain is cumbersome, due to the coexistence of infarction, large blood vessels, ventricles, and intact BBB regions, specifically in areas with weak signal enhancement following contrast agent injection. HYPOTHESIS: That from dynamic susceptibility contrast (DSC)-MRI alone, without user intervention, regions of weak BBB damage can be segmented based on the leakage-related parameter K 2 and the extent of intact BBB regions, needed to estimate K 2 values, determined. STUDY TYPE: Feasibility. ANIMAL MODEL: Ten female Sprague-Dawley rats (SD, 200-250g) underwent 1-hour middle carotid artery occlusion (MCAO) and 1-day reperfusion. Two SD rats underwent 1-hour MCAO with 3-day and 5-day reperfusion. FIELD STRENGTH/SEQUENCE: 7T; ADC and T1 maps using diffusion-weighted echo planar imaging (EPI) and relaxation enhancement (RARE) with variable repetition time (TR), respectively. dynamic contrast-enhanced (DCE)-MRI using FLASH. DSC-MRI using gradient-echo EPI. ASSESSMENT: Constrained nonnegative matrix factorization (cNMF) was applied to the dynamic ΔR2* -curves of DSC-MRI (<4 min) in a BBB-disrupted rat model. Areas of voxels with intact BBB, classified by automated cNMF analyses, were then used in estimating K 1 and K 2 values, and compared with corresponding values from manually-derived areas. STATISTICAL TESTS: Mean ± standard deviation of ΔT1 -differences between ischemic and healthy areas were displayed with unpaired Student's t-tests. Scatterplots were displayed with slopes and intercepts and Pearson's r values were evaluated between K 2 maps obtained with automatic (cNMF)- and manually-derived regions of interest (ROIs) of the intact BBB region. RESULTS: Mildly BBB-damaged areas (indistinguishable from DCE-MRI (10 min) parameters) were automatically segmented. Areas of voxels with intact BBB, classified by automated cNMF, matched closely the corresponding, manually-derived areas when respective areas were used in estimating K 2 maps (Pearson's r = 0.97, 12 slices). DATA CONCLUSION: Automatic segmentation of short DSC-MRI data alone successfully identified areas with intact and compromised BBB in the stroke brain and compared favorably with manual segmentation. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1369-1381.


Subject(s)
Blood-Brain Barrier , Stroke , Animals , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Feasibility Studies , Female , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley , Stroke/diagnostic imaging
7.
J Clin Invest ; 129(2): 786-801, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30480549

ABSTRACT

Tumor cure with conventional fractionated radiotherapy is 65%, dependent on tumor cell-autonomous gradual buildup of DNA double-strand break (DSB) misrepair. Here we report that single-dose radiotherapy (SDRT), a disruptive technique that ablates more than 90% of human cancers, operates a distinct dual-target mechanism, linking acid sphingomyelinase-mediated (ASMase-mediated) microvascular perfusion defects to DNA unrepair in tumor cells to confer tumor cell lethality. ASMase-mediated microcirculatory vasoconstriction after SDRT conferred an ischemic stress response within parenchymal tumor cells, with ROS triggering the evolutionarily conserved SUMO stress response, specifically depleting chromatin-associated free SUMO3. Whereas SUMO3, but not SUMO2, was indispensable for homology-directed repair (HDR) of DSBs, HDR loss of function after SDRT yielded DSB unrepair, chromosomal aberrations, and tumor clonogen demise. Vasoconstriction blockade with the endothelin-1 inhibitor BQ-123, or ROS scavenging after SDRT using peroxiredoxin-6 overexpression or the SOD mimetic tempol, prevented chromatin SUMO3 depletion, HDR loss of function, and SDRT tumor ablation. We also provide evidence of mouse-to-human translation of this biology in a randomized clinical trial, showing that 24 Gy SDRT, but not 3×9 Gy fractionation, coupled early tumor ischemia/reperfusion to human cancer ablation. The SDRT biology provides opportunities for mechanism-based selective tumor radiosensitization via accessing of SDRT/ASMase signaling, as current studies indicate that this pathway is tractable to pharmacologic intervention.


Subject(s)
Homologous Recombination , Neoplasms , Reperfusion Injury , Signal Transduction , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Humans , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/radiotherapy , Signal Transduction/genetics , Signal Transduction/radiation effects , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
8.
Magn Reson Med ; 79(3): 1736-1744, 2018 03.
Article in English | MEDLINE | ID: mdl-28727185

ABSTRACT

PURPOSE: To automate dynamic contrast-enhanced MRI (DCE-MRI) data analysis by unsupervised pattern recognition (PR) to enable spatial mapping of intratumoral vascular heterogeneity. METHODS: Three steps were automated. First, the arrival time of the contrast agent at the tumor was determined, including a calculation of the precontrast signal. Second, four criteria-based algorithms for the slice-specific selection of number of patterns (NP) were validated using 109 tumor slices from subcutaneous flank tumors of five different tumor models. The criteria were: half area under the curve, standard deviation thresholding, percent signal enhancement, and signal-to-noise ratio (SNR). The performance of these criteria was assessed by comparing the calculated NP with the visually determined NP. Third, spatial assignment of single patterns and/or pattern mixtures was obtained by way of constrained nonnegative matrix factorization. RESULTS: The determination of the contrast agent arrival time at the tumor slice was successfully automated. For the determination of NP, the SNR-based approach outperformed other selection criteria by agreeing >97% with visual assessment. The spatial localization of single patterns and pattern mixtures, the latter inferring tumor vascular heterogeneity at subpixel spatial resolution, was established successfully by automated assignment from DCE-MRI signal-versus-time curves. CONCLUSION: The PR-based DCE-MRI analysis was successfully automated to spatially map intratumoral vascular heterogeneity. Magn Reson Med 79:1736-1744, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neovascularization, Pathologic/diagnostic imaging , Pattern Recognition, Automated/methods , Algorithms , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Humans , Neoplasms/blood supply , Principal Component Analysis
9.
Sci Rep ; 7(1): 9746, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851989

ABSTRACT

Tumor heterogeneity can be elucidated by mapping subregions of the lesion with differential imaging characteristics, called habitats. Dynamic Contrast Enhanced (DCE-)MRI can depict the tumor microenvironments by identifying areas with variable perfusion and vascular permeability, since individual tumor habitats vary in the rate and magnitude of the contrast uptake and washout. Of particular interest is identifying areas of hypoxia, characterized by inadequate perfusion and hyper-permeable vasculature. An automatic procedure for delineation of tumor habitats from DCE-MRI was developed as a two-part process involving: (1) statistical testing in order to determine the number of the underlying habitats; and (2) an unsupervised pattern recognition technique to recover the temporal contrast patterns and locations of the associated habitats. The technique is examined on simulated data and DCE-MRI, obtained from prostate and brain pre-clinical cancer models, as well as clinical data from sarcoma and prostate cancer patients. The procedure successfully identified habitats previously associated with well-perfused, hypoxic and/or necrotic tumor compartments. Given the association of tumor hypoxia with more aggressive tumor phenotypes, the obtained in vivo information could impact management of cancer patients considerably.


Subject(s)
Brain Neoplasms/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Sarcoma/pathology , Tumor Microenvironment , Animals , Automation, Laboratory , Computer Simulation , Disease Models, Animal , Humans , Male , Mice
10.
NMR Biomed ; 30(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28272795

ABSTRACT

Cancer growth and proliferation rely on intracellular iron availability. We studied the effects of Deferiprone (DFP), a chelator of intracellular iron, on three prostate cancer cell lines: murine, metastatic TRAMP-C2; murine, non-metastatic Myc-CaP; and human, non-metastatic 22rv1. The effects of DFP were evaluated at different cellular levels: cell culture proliferation and migration; metabolism of live cells (time-course multi-nuclear magnetic resonance spectroscopy cell perfusion studies, with 1-13 C-glucose, and extracellular flux analysis); and expression (Western blot) and activity of mitochondrial aconitase, an iron-dependent enzyme. The 50% and 90% inhibitory concentrations (IC50 and IC90 , respectively) of DFP for the three cell lines after 48 h of incubation were within the ranges 51-67 µM and 81-186 µM, respectively. Exposure to 100 µM DFP led to: (i) significant inhibition of cell migration after different exposure times, ranging from 12 h (TRAMP-C2) to 48 h (22rv1), in agreement with the respective cell doubling times; (ii) significantly decreased glucose consumption and glucose-driven tricarboxylic acid cycle activity in metastatic TRAMP-C2 cells, during the first 10 h of exposure, and impaired cellular bioenergetics and membrane phospholipid turnover after 23 h of exposure, consistent with a cytostatic effect of DFP. At this time point, all cell lines studied showed: (iii) significant decreases in mitochondrial functional parameters associated with the oxygen consumption rate, and (iv) significantly lower mitochondrial aconitase expression and activity. Our results indicate the potential of DFP to inhibit prostate cancer proliferation at clinically relevant doses and plasma concentrations.


Subject(s)
Prostatic Neoplasms/pathology , Pyridones/pharmacology , Aconitate Hydratase/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Deferiprone , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects , Prostatic Neoplasms/metabolism , Time Factors
11.
Front Oncol ; 7: 3, 2017.
Article in English | MEDLINE | ID: mdl-28197395

ABSTRACT

Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.

12.
Exp Cell Res ; 352(1): 20-33, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28132882

ABSTRACT

Human breast tumors contain significant amounts of stromal cells. There exists strong evidence that these stromal cells support cancer development and progression by altering various pathways (e.g. downregulation of tumor suppressor genes or autocrine signaling loops). Here, we suggest that stromal carcinoma-associated fibroblasts (CAFs), shown to be generated from bone marrow-derived mesenchymal stem cells, may (i) recycle tumor-derived lactate for their own energetic requirements, thereby sparing glucose for neighboring glycolytic tumor cells, and (ii) subsequently secrete surplus energetically and biosynthetically valuable metabolites of lactate oxidation, such as pyruvate, to support tumor growth. Lactate, taken up by stromal CAFs, is converted to pyruvate, which is then utilized by CAFs for energy needs as well as excreted and shared with tumor cells. We have interrogated lactate oxidation in CAFs to determine what metabolites may be secreted, and how they may affect the metabolism and growth of MDA-MB-231 breast cancer cells. We found that CAFs secrete pyruvate as a metabolite of lactate oxidation. Further, we show that pyruvate is converted to lactate to promote glycolysis in MDA-MB-231 cells and helps to control elevated ROS levels in these tumor cells. Finally, we found that inhibiting or interfering with ROS management, using the naturally occurring flavonoid phloretin (found in apple tree leaves), adds to the cytotoxicity of the conventional chemotherapeutic agent doxorubicin. Our work demonstrates that a lactate-pyruvate, reciprocally-supportive metabolic relationship may be operative within the tumor microenvironment (TME) to support tumor growth, and may be a useful drug target.


Subject(s)
Breast Neoplasms/metabolism , Fibroblasts/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Stromal Cells/metabolism , Tumor Microenvironment , Autocrine Communication , Breast Neoplasms/pathology , Carbon Radioisotopes/metabolism , Cell Communication , Cells, Cultured , Female , Fibroblasts/pathology , Glycolysis , Humans , Metabolic Networks and Pathways , Stromal Cells/pathology
14.
Neoplasia ; 17(8): 671-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26408259

ABSTRACT

Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.


Subject(s)
Adaptation, Physiological , Glucose/metabolism , Glutamine/metabolism , Tumor Microenvironment , Animals , Carbon-13 Magnetic Resonance Spectroscopy/methods , Cell Line, Tumor , Cell Survival/drug effects , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Glucose/pharmacology , Glutamine/pharmacology , Glycolysis/drug effects , Hydrogen-Ion Concentration , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice, Inbred BALB C , Neoplasm Metastasis , Oxidative Phosphorylation/drug effects , Phospholipids/metabolism
15.
Oncotarget ; 6(33): 34732-44, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26416246

ABSTRACT

Bortezomib, a novel proteasome inhibitor, has been approved for treating multiple myeloma and mantle cell lymphoma and studied pre-clinically and clinically for solid tumors. Preferential cytotoxicity of bortezomib was found toward hypoxic tumor cells and endothelial cells in vitro. The purpose of this study is to investigate the role of a pretreatment hypoxic tumor microenvironment on the effects of bortezomib in vitro and ex vivo, and explore the feasibility of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) to noninvasively evaluate the biological effects of bortezomib. It was shown in vitro by Western blot, flow cytometry, and ELISA that bortezomib accumulated HIF-1α in non-functional forms and blocks its hypoxia response in human colorectal cancer cell lines. Ex vivo experiments were performed with fluorescent immunohistochemical staining techniques using multiple endogenous and exogenous markers to identify hypoxia (pimonidazole, HRE-TKeGFP), blood flow/permeability (Hoechst 33342), micro-vessels (CD31 and SMA), apoptosis (cleaved caspase 3) and hypoxia response (CA9). After bortezomib administration, overall apoptosis index was significantly increased and blood perfusion was dramatically decreased in tumor xenografts. More importantly, apoptosis signals were found preferentially located in moderate and severe pretreatment hypoxic regions in both tumor and endothelial cells. Meanwhile, DCE MRI examinations showed that the tumor blood flow and permeability decreased significantly after bortezomib administration. The present study revealed that bortezomib reduces tumor hypoxia response and blood perfusion, thus, presenting antivascular properties. It will be important to determine the hypoxic/perfusion status pre- and during treatment at further translational studies.


Subject(s)
Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Cell Hypoxia/drug effects , Neoplasms, Experimental/blood supply , Tumor Microenvironment/drug effects , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Contrast Media , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Image Enhancement , Image Processing, Computer-Assisted , Immunohistochemistry , Magnetic Resonance Imaging/methods , Mice , Mice, Nude , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays
16.
Proc Natl Acad Sci U S A ; 111(20): 7254-9, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24785505

ABSTRACT

Generally, solid tumors (>400 mm(3)) are inherently acidic, with more aggressive growth producing greater acidity. If the acidity could be targeted as a biomarker, it would provide a means to gauge the pace of tumor growth and degree of invasiveness, as well as providing a basis for predicting responses to pH-dependent chemotherapies. We have developed a (64)Cu pH (low) insertion peptide (pHLIP) for targeting, imaging, and quantifying acidic tumors by PET, and our findings reveal utility in assessing prostate tumors. The new pHLIP version limits indiscriminate healthy tissue binding, and we demonstrate its targeting of extracellular acidification in three different prostate cancer models, each with different vascularization and acid-extruding protein carbonic anhydrase IX (CAIX) expression. We then describe the tumor distribution of this radiotracer ex vivo, in association with blood perfusion and known biomarkers of acidity, such as hypoxia, lactate dehydrogenase A, and CAIX. We find that the probe reveals metabolic variations between and within tumors, and discriminates between necrotic and living tumor areas.


Subject(s)
Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacology , Animals , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Chelating Agents/pharmacology , Gallium Radioisotopes/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacology , Humans , Hydrogen-Ion Concentration , Hypoxia , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Male , Membrane Proteins/pharmacology , Mice , Mice, Nude , Neoplasm Transplantation , Phenotype
17.
Phys Med Biol ; 59(2): R65-R127, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24374985

ABSTRACT

This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include (1)H, (31)P, chemical exchange saturation transfer imaging and hyperpolarized (13)C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.


Subject(s)
Magnetic Resonance Imaging/methods , Neoplasms/diagnosis , Animals , Humans , Neoplasms/blood , Oxygen/blood
18.
J Biomed Opt ; 18(8): 87002, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23912761

ABSTRACT

The spectral changes of native fluorophores among normal fibroblasts and cancer cell lines of different metastatic ability are investigated by fluorescence spectroscopy. The normal (fibroblast), moderately metastatic (DU-145), and advanced metastatic (PC-3) cell lines were each selectively excited at 300 nm, and their fluorescence emission spectra are analyzed using principal component analysis to explore the differences of the relative contents of tryptophan and reduced nicotinamide adenine dinucleotide in these cell lines. The results show that the tryptophan emission featured predominantly in the fluorescence spectra of the advanced metastatic cancer cells in comparison with the moderately metastatic cancer and normal cells.


Subject(s)
Biomarkers, Tumor/analysis , Molecular Imaging/methods , NAD/analysis , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/diagnosis , Spectrometry, Fluorescence/methods , Tryptophan/analysis , Cell Line, Tumor , Diagnosis, Differential , Humans , Male , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity
19.
Magn Reson Imaging ; 30(6): 741-52, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22465192

ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides critical information regarding tumor perfusion and permeability by injecting a T(1) contrast agent, such as Gd-DTPA, and making a time-resolved measurement of signal increase. Both temporal and spatial resolutions are required to be high to achieve an accurate and reproducible estimation of tumor perfusion. However, the dynamic nature of the DCE experiment limits simultaneous improvement of temporal and spatial resolution by conventional methods. Compressed sensing (CS) has become an important tool for the acceleration of imaging times in MRI, which is achieved by enabling the reconstruction of subsampled data. Similarly, CS algorithms can be utilized to improve the temporal/spatial resolution of DCE-MRI, and several works describing retrospective simulations have demonstrated the feasibility of such improvements. In this study, the fast low angle shot sequence was modified to implement a Cartesian, CS-optimized, sub-Nyquist phase encoding acquisition/reconstruction with multiple two-dimensional slice selections and was tested on water phantoms and animal tumor models. The mean voxel-level concordance correlation coefficient for Ak(ep) values obtained from ×4 and ×8 accelerated and the fully sampled data was 0.87±0.11 and 0.83±0.11, respectively (n=6), with optimized CS parameters. In this case, the reduction of phase encoding steps made possible by CS reconstruction improved effectively the temporal/spatial resolution of DCE-MRI data using an in vivo animal tumor model (n=6) and may be useful for the investigation of accelerated acquisitions in preclinical and clinical DCE-MRI trials.


Subject(s)
Contrast Media , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Animals , Female , Gadolinium DTPA , Mice , Neoplasm Transplantation , Neoplasms, Experimental/diagnosis , Phantoms, Imaging
20.
Transl Oncol ; 5(6): 437-47, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23326621

ABSTRACT

In solid tumors, hypoxia contributes significantly to radiation and chemotherapy resistance and to poor outcomes. The "gold standard" pO(2) electrode measurements of hypoxia in vivo are unsatisfactory because they are invasive and have limited spatial coverage. Here, we present an approach to identify areas of tumor hypoxia using the signal versus time curves of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data as a surrogate marker of hypoxia. We apply an unsupervised pattern recognition (PR) technique to determine the differential signal versus time curves associated with different tumor microenvironmental characteristics in DCE-MRI data of a preclinical cancer model. Well-perfused tumor areas are identified by rapid contrast uptake followed by rapid washout; hypoxic areas, which are regions of reduced vascularization, are identified by delayed contrast signal buildup and washout; and necrotic areas exhibit slow or no contrast uptake and no discernible washout over the experimental observation. The strength of the PR concept is that it captures the pixel-enhancing behavior in its entirety-during both contrast agent uptake and washout-and thus, subtleties in the temporal behavior of contrast enhancement related to features of the tumor microenvironment (driven by vascular changes) may be detected. The assignment of the tumor compartments/microenvironment to well vascularized, hypoxic, and necrotic is validated by comparison to data previously obtained using complementary imaging modalities. The proposed novel analysis approach has the advantage that it can be readily translated to the clinic, as DCE-MRI is used routinely for the identification of tumors in patients, is widely available, and easily implemented on any clinical magnet.

SELECTION OF CITATIONS
SEARCH DETAIL
...