Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 574: 79-103, 2016.
Article in English | MEDLINE | ID: mdl-27423858

ABSTRACT

Chemical biology approaches are a powerful means to functionally characterize epigenetic regulators such as histone modifying enzymes. We outline experimental protocols and best practices for the cellular characterization and use of "chemical probes" that selectively inhibit protein methyltransferases, many of which methylate histones to regulate heritable gene expression patterns. We describe biomarker assays to validate the probes in specific cellular systems, and provide guidelines for their use in functional characterization of methyltransferases including detailed protocols, examples, and controls. Together these techniques enable precision manipulation of cellular epigenomes and the exploration of the therapeutic potential of epigenetic targets in human disease.


Subject(s)
Epigenomics/methods , Histone Code , Histones/metabolism , Methyltransferases/metabolism , Animals , Enzyme Assays/methods , Epigenesis, Genetic , Histones/genetics , Humans , Methylation , Methyltransferases/antagonists & inhibitors
2.
Neuroscience ; 219: 255-70, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22698694

ABSTRACT

The pyramidal neurons in the hippocampus are extremely neuroplastic, and the complexity of dendritic branches can be dynamically altered in response to a variety of stimuli, including learning and stress. Recently, the teneurin family of proteins has emerged as an interneuronal and extracellular matrix signaling system that plays a significant role in brain development and neuronal communication. Encoded on the last exon of the teneurin genes is a new family of bioactive peptides termed the teneurin C-terminal-associated peptides (TCAPs). Previous studies indicate that TCAP-1 regulates axon fasciculation and dendritic morphology in the hippocampus. This study was aimed at understanding the molecular mechanisms by which TCAP-1 regulates these changes in the mouse hippocampus. Fluoresceinisothiocyanate (FITC)-labeled TCAP-1 binds to the pyramidal neurons of the CA2 and CA3, and dentate gyrus in the hippocampus of the mouse brain. Moreover, FITC-TCAP-1 co-localizes with ß-dystroglycan upon binding to the plasma membrane of cultured immortalized mouse E14 hippocampal cells. In culture, TCAP-1 stimulates ERK1/2-dependent phosphorylation of the cytoskeletal regulatory proteins, stathmin at serine-25 and filamin A at serine-2152. In addition, TCAP-1 induces actin polymerization, increases immunoreactivity of tubulin-based cytoskeletal elements and causes a corresponding increase in filopodia formation and mean filopodia length in cultured hippocampal cells. We postulate that the TCAP-1 region of teneurin-1 has a direct action on the cytoskeletal reorganization that precedes neurite and process development in hippocampal neurons. Our data provides novel evidence that functionally links the teneurin and dystroglycan systems and provides new insight into the molecular mechanisms by which TCAP-1 regulates cytoskeletal dynamics in hippocampal neurons. The TCAP-dystroglycan system may represent a novel mechanism associated with the regulation of hippocampal-function.


Subject(s)
Contractile Proteins/metabolism , Cytoskeleton/metabolism , Dystroglycans/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Pyramidal Cells/metabolism , Stathmin/metabolism , Tenascin/metabolism , Animals , Blotting, Western , Filamins , Fluorescent Antibody Technique , Hippocampus/physiology , MAP Kinase Signaling System/physiology , Mice , Neurogenesis/physiology
3.
Rapid Commun Mass Spectrom ; 17(22): 2508-16, 2003.
Article in English | MEDLINE | ID: mdl-14608621

ABSTRACT

A high-performance orthogonal time-of-flight (TOF) mass spectrometer was developed specifically for use in combination with a matrix-assisted laser desorption/ionization (MALDI) source. The MALDI source features an ionization region containing a buffer gas with variable pressure. The source is interfaced to the TOF section via a collisional focusing ion guide. The pressure in the source influences the rate of cooling and allows control of ion fragmentation. The instrument provides uniform resolution up to 18,000 FWHM (full width at half maximum). Mass accuracy routinely achieved with a single-point internal recalibration is below 2 ppm for protein digest samples. The instrument is also capable of recording spectra of samples containing compounds with a broad range of masses while using one set of experimental conditions and without compromising resolution or mass accuracy.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Algorithms , Amino Acid Sequence , Calibration , Caseins/chemistry , Coumaric Acids/chemistry , Molecular Sequence Data , Myoglobin/chemistry , Peptide Mapping , Peptides/chemistry , Phosphopeptides/chemistry , Proteins/chemistry , Serum Albumin, Bovine/chemistry
4.
Rapid Commun Mass Spectrom ; 15(14): 1152-9, 2001.
Article in English | MEDLINE | ID: mdl-11445896

ABSTRACT

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectra of small kappa-carrageenans are reported and discussed. MALDI spectra can be obtained in both positive and negative ion mode. In the absence of extraneous metal ions, positive ions are formed by the attachment of one Na(+) ion to the carrageenan, whereas for negative ions one Na(+) ion is detached from the sulfate group. Multiply charged species are not observed in MALDI. Intense ESI spectra can be obtained in negative ion mode and now multiply charged species are seen. Alkali exchange experiments show that in these small carrageenan anions one, but only one, alkali metal ion is bound in a bidentate coordination with two ionic sulfate groups. G2-type ab initio calculations on model ions HO(-) [M(+)] (-)OH (M = Li, Na, K, Cs), as well as arguments based on a simple Coulombic interaction model, show that the bidentate stabilization energy drops rapidly as the size of the alkali cation increases. Exchange of Na(+) with Li(+) leads to expulsion of the Na(+) ion generating, in ESI, intense multiply charged anions. An attempt is made to rationalize this behavior in terms of hydration effects.


Subject(s)
Carrageenan/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
5.
Analyst ; 125(4): 591-7, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10892015

ABSTRACT

Electrospray mass spectrometry (ESMS) and collision-induced dissociation (CID) methodologies have been developed for the structural characterization of ginseng saponins (ginsenosides). Ginsenosides are terpene glycosides containing a triterpene core to which one to four sugars may be attached. They are neutral molecules which readily form molecular metal-attachment ions in positive ion ESMS experiments. In the presence of ammonium hydroxide intense deprotonated ions are generated. Both positive and negative ion ESMS experiments were found to be useful for molecular mass and structure determination of ten ginsenoside standards. Negative ion experiments made possible the determination of the molecular mass of each ginsenoside standard, the mass of the triterpene core and the masses and sequences of the sugar residues. Positive ion ESMS experiments with the alkali metal cations Li+ or Na+ and the transition metal cations Co2+, Ni2+ and Zn2+ were also useful in determining molecular masses. These alkali and transition metal cations form strongly bonded attachment ions with the ginsenosides. As a result, the CID mass spectra of the metal attachment ions show a variety of (structure characteristic) fragmentations. These experiments can be used to determine the identity of the triterpene core, the types and attachment points of sugars to the core and the nature of the O-glycosidic linkages in the appended disaccharides. Combining the results from the negative and positive ion experiments provides a promising approach to the structure analysis of this class of natural products.


Subject(s)
Panax/chemistry , Plants, Medicinal , Saponins/analysis , Mass Spectrometry/methods
6.
Carbohydr Res ; 305(2): 223-32, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9581276

ABSTRACT

Lipo-oligosaccharide (LOSa) was obtained by phenol-water extraction of bacterial cells of an isolate PG 836, identified as Campylobacter jejuni serotype O:10, from a patient who subsequently developed the Miller-Fisher syndrome (MFS). The product was separated into a water-insoluble gel of low Mr and a water-soluble component of high Mr. The structure of the core oligosaccharide region in LOSa is reported herein for comparison with LOSb from the C. jejuni O:10 reference strain, and is based on investigations carried out on: (1) O-deacylated LOSa; (2) the core oligosaccharide (OS 1a) liberated on acetic acid hydrolysis of the ketosidic linkages to lipid A, with accompanying loss of N-acetylneuraminic acid residues; (3) the product of the removal of phosphate residues from OS 1a to give OS 2a; and (4) the Smith degradation of OS 2a to yield a mixture of Os 3a and OS 4a. The results revealed that the core oligosaccharide region in LOSa from the MFS bacterial isolate had chains (1a), of which some were terminated by an N-acetylneuraminobiose [Neu5Ac(alpha 2-8)Neu5Ac] unit in a GD3 [Neu5Ac-Neu5Ac-Gal] epitope, and the inner regions of which were different from those of other C. jejuni serotypes. Similar experiments on LOSb from bacterial cells of the C. jejuni O:10 reference strain showed that the core oligosaccharide unit [1a, R = P (phosphoric monoester)] of LOSa from the MFS isolate was more uniformly complete than that of the O:10 reference strain [1b, R = AEP (2-aminoethylphosphate)] differing in the nature of the phosphate substituent at the inner heptose residue. The close structural relationship of LOSa from the MFS associated bacterium to LOSb from the O:10 reference strain runs parallel to that of the previously studied Guillain-Barré syndrome (GBS) associated bacterium typed as C. jejuni O:19 in comparison with the lipo-oligosaccharide from the reference strain. Preliminary studies on the high Mr components showed that those from the O:10 strains were indistinguishable from each other, but were structurally unrelated to those from the GBS associated C. jejuni serotype O:19 isolates and the O:19 reference strain [G.O. Aspinall, A.G. McDonald, and H. Pang, Biochemistry, 33 (1994) 250-255].


Subject(s)
Campylobacter jejuni/chemistry , Lipopolysaccharides/chemistry , Miller Fisher Syndrome/microbiology , O Antigens/chemistry , Campylobacter jejuni/isolation & purification , Carbohydrate Sequence , Humans , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...