Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Neurosci ; 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127519

ABSTRACT

The Russian fox-farm experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness vs. aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphological covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENTDomestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian fox-farm experiment. Compared to a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the prefrontal cortex and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly - within the span of less than a hundred generations.

2.
Genes Brain Behav ; 19(1): e12614, 2020 01.
Article in English | MEDLINE | ID: mdl-31605445

ABSTRACT

The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.


Subject(s)
Aggression , Foxes/genetics , Hypothalamus/metabolism , Transcriptome , Animals , Foxes/physiology , Gene Regulatory Networks
3.
Proc Natl Acad Sci U S A ; 115(41): 10398-10403, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30228118

ABSTRACT

Animal domestication efforts have led to a shared spectrum of striking behavioral and morphological changes. To recapitulate this process, silver foxes have been selectively bred for tame and aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. To understand the genetic basis and molecular mechanisms underlying the phenotypic changes, we profiled gene expression levels and coding SNP allele frequencies in two brain tissue specimens from 12 aggressive foxes and 12 tame foxes. Expression analysis revealed 146 genes in the prefrontal cortex and 33 genes in the basal forebrain that were differentially expressed, with a 5% false discovery rate (FDR). These candidates include genes in key pathways known to be critical to neurologic processing, including the serotonin and glutamate receptor pathways. In addition, 295 of the 31,000 exonic SNPs show significant allele frequency differences between the tame and aggressive populations (1% FDR), including genes with a role in neural crest cell fate determination.


Subject(s)
Aggression , Behavior, Animal , Brain/metabolism , Foxes/genetics , Genome , Selection, Genetic , Transcriptome , Animals , Foxes/psychology , Genomics , Male , Polymorphism, Single Nucleotide , Russia
4.
Nat Ecol Evol ; 2(9): 1514, 2018 09.
Article in English | MEDLINE | ID: mdl-30104754

ABSTRACT

In the version of this Article originally published, there were some errors in the affiliations: Stephen J. O'Brien's affiliations were incorrectly listed as 8,9; they should have been 7,9. Affiliation 3 was incorrectly named the Institute of Cytology and Genetics of the Russian Academy of Sciences; it should have read Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences. Affiliation 4 was incorrectly named the Institute of Molecular and Cell Biology of the Russian Academy of Sciences; it should have read Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences. These have now been corrected.

5.
Nat Ecol Evol ; 2(9): 1479-1491, 2018 09.
Article in English | MEDLINE | ID: mdl-30082739

ABSTRACT

Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.


Subject(s)
Aggression , Behavior, Animal , Foxes/physiology , Genome , Animals , Female , Male
6.
G3 (Bethesda) ; 8(3): 859-873, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29378821

ABSTRACT

Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Aggression , Behavior, Animal , Foxes/genetics , Foxes/metabolism , Pituitary Gland, Anterior/metabolism , Transcriptome , Alternative Splicing , Animals , Computational Biology/methods , Domestication , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
7.
Behav Genet ; 47(1): 88-101, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27757730

ABSTRACT

Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.


Subject(s)
Behavior, Animal , Foxes/genetics , Social Behavior , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Epistasis, Genetic , Female , Male , Phenotype , Principal Component Analysis , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
8.
PLoS One ; 10(6): e0127013, 2015.
Article in English | MEDLINE | ID: mdl-26061395

ABSTRACT

The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.


Subject(s)
Aggression , Behavior, Animal , Foxes/genetics , Genotype , Quantitative Trait Loci , Animals , Chromosome Mapping , Foxes/physiology , Gene Frequency , Polymorphism, Single Nucleotide
9.
Invest Ophthalmol Vis Sci ; 54(10): 7005-19, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24045995

ABSTRACT

PURPOSE: To identify the causative mutations in two early-onset canine retinal degenerations, crd1 and crd2, segregating in the American Staffordshire terrier and the Pit Bull Terrier breeds, respectively. METHODS: Retinal morphology of crd1- and crd2-affected dogs was evaluated by light microscopy. DNA was extracted from affected and related unaffected controls. Association analysis was undertaken using the Illumina Canine SNP array and PLINK (crd1 study), or the Affymetrix Version 2 Canine array, the "MAGIC" genotype algorithm, and Fisher's Exact test for association (crd2 study). Positional candidate genes were evaluated for each disease. RESULTS: Structural photoreceptor abnormalities were observed in crd1-affected dogs as young as 11-weeks old. Rod and cone inner segment (IS) and outer segments (OS) were abnormal in size, shape, and number. In crd2-affected dogs, rod and cone IS and OS were abnormal as early as 3 weeks of age, progressing with age to severe loss of the OS, and thinning of the outer nuclear layer (ONL) by 12 weeks of age. Genome-wide association study (GWAS) identified association at the telomeric end of CFA3 in crd1-affected dogs and on CFA33 in crd2-affected dogs. Candidate gene evaluation identified a three bases deletion in exon 21 of PDE6B in crd1-affected dogs, and a cytosine insertion in exon 10 of IQCB1 in crd2-affected dogs. CONCLUSIONS: Identification of the mutations responsible for these two early-onset retinal degenerations provides new large animal models for comparative disease studies and evaluation of potential therapeutic approaches for the homologous human diseases.


Subject(s)
Calmodulin-Binding Proteins/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , DNA/genetics , Genetic Predisposition to Disease , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/genetics , Animals , Calmodulin-Binding Proteins/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , DNA Mutational Analysis , Disease Models, Animal , Dogs , Female , Genome-Wide Association Study , Genotype , Male , Mutation , Pedigree , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
10.
Mol Vis ; 19: 1871-84, 2013.
Article in English | MEDLINE | ID: mdl-24019744

ABSTRACT

PURPOSE: To identify the causative mutation of canine progressive retinal atrophy (PRA) segregating as an adult onset autosomal recessive disorder in the Basenji breed of dog. METHODS: Basenji dogs were ascertained for the PRA phenotype by clinical ophthalmoscopic examination. Blood samples from six affected cases and three nonaffected controls were collected, and DNA extraction was used for a genome-wide association study using the canine HD Illumina single nucleotide polymorphism (SNP) array and PLINK. Positional candidate genes identified within the peak association signal region were evaluated. RESULTS: The highest -Log10(P) value of 4.65 was obtained for 12 single nucleotide polymorphisms on three chromosomes. Homozygosity and linkage disequilibrium analyses favored one chromosome, CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T>C), which would result in the addition of 25 amino acids (p.*405Rext*25). CONCLUSIONS: Identification of this non-stop SAG mutation in dogs affected with retinal degeneration establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis pigmentosa in humans, and offers opportunities for genetic therapeutic intervention.


Subject(s)
Arrestin/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mutation/genetics , Retinal Degeneration/genetics , Retinal Degeneration/veterinary , Amino Acid Sequence , Animals , Arrestin/chemistry , Base Sequence , Case-Control Studies , Codon, Nonsense/genetics , Dogs , Female , Fundus Oculi , Homozygote , Male , Molecular Sequence Data , Pedigree , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
BMC Genet ; 14: 27, 2013 Apr 20.
Article in English | MEDLINE | ID: mdl-23601474

ABSTRACT

BACKGROUND: Achromatopsia is an autosomal recessive disease characterized by the loss of cone photoreceptor function that results in day-blindness, total colorblindness, and decreased central visual acuity. The most common causes for the disease are mutations in the CNGB3 gene, coding for the beta subunit of the cyclic nucleotide-gated channels in cones. CNGB3-achromatopsia, or cone degeneration (cd), is also known to occur in two canine breeds, the Alaskan malamute (AM) and the German shorthaired pointer. RESULTS: Here we report an in-depth characterization of the achromatopsia phenotype in a new canine breed, the miniature Australian shepherd (MAS). Genotyping revealed that the dog was homozygous for a complete genomic deletion of the CNGB3 gene, as has been previously observed in the AM. Identical breakpoints on chromosome 29 were identified in both the affected AM and MAS with a resulting deletion of 404,820 bp. Pooled DNA samples of unrelated purebred Australian shepherd, MAS, Siberian husky, Samoyed and Alaskan sled dogs were screened for the presence of the affected allele; one Siberian husky and three Alaskan sled dogs were identified as carriers. The affected chromosomes from the AM, MAS, and Siberian husky were genotyped for 147 SNPs in a 3.93 Mb interval within the cd locus. An identical shared affected haplotype, 0.5 Mb long, was observed in all three breeds and defined the minimal linkage disequilibrium (LD) across breeds. This supports the idea that the mutated allele was identical by descent (IBD). CONCLUSION: We report the occurrence of CNGB3-achromatopsia in a new canine breed, the MAS. The CNGB3-deletion allele previously described in the AM was also observed in a homozygous state in the affected MAS, as well as in a heterozygous carrier state in a Siberian husky and Alaskan sled dogs. All affected alleles were shown to be IBD, strongly suggesting an affected founder effect. Since the MAS is not known to be genetically related to the AM, other breeds may potentially carry the same cd-allele and be affected by achromatopsia.


Subject(s)
Color Vision Defects/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Dog Diseases/genetics , Dogs/genetics , Animals , Breeding , Color Vision Defects/veterinary , DNA Mutational Analysis , Founder Effect , Genotype , Linkage Disequilibrium , Phenotype , Sequence Deletion
12.
Mamm Genome ; 23(1-2): 164-77, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22108806

ABSTRACT

The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.


Subject(s)
Behavior, Animal , Foxes/genetics , Foxes/psychology , Animals , Breeding , Chromosome Mapping , Dogs , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide , Social Behavior
13.
Mamm Genome ; 23(1-2): 40-61, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22065099

ABSTRACT

Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.


Subject(s)
Dog Diseases/genetics , Retinal Diseases/veterinary , Vision, Ocular/genetics , Animals , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Dogs , Genetic Variation , Genome-Wide Association Study , Genotype , Mutation , Phenotype , Retinal Degeneration/genetics , Retinal Degeneration/veterinary , Retinal Diseases/genetics
14.
BMC Genomics ; 12: 482, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21967120

ABSTRACT

BACKGROUND: Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. RESULTS: cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. CONCLUSIONS: Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.


Subject(s)
Foxes/genetics , Prefrontal Cortex/metabolism , Transcriptome , Animals , Contig Mapping , Databases, Factual , Dogs , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
15.
PLoS One ; 6(9): e24074, 2011.
Article in English | MEDLINE | ID: mdl-21980341

ABSTRACT

A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7-14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.


Subject(s)
Mutation , Protein Serine-Threonine Kinases/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Cell Proliferation , Dogs , Gene Expression Regulation , Glutamine/metabolism , Immunohistochemistry/methods , Intermediate Filament Proteins/biosynthesis , Kinetics , Models, Biological , Nerve Tissue Proteins/biosynthesis , Nestin , Rod Opsins/metabolism
16.
Biol J Linn Soc Lond ; 103(1): 168-175, 2011 May.
Article in English | MEDLINE | ID: mdl-21625363

ABSTRACT

The foxes at Novosibirsk, Russia, are the only population of domesticated foxes in the world. These domesticated foxes originated from farm-bred silver foxes (Vulpes vulpes), whose genetic source is unknown. In this study we examined the origin of the domesticated strain of foxes and two other farm-bred fox populations (aggressive and unselected) maintained in Novosibirsk. To identify the phylogenetic origin of these populations we sequenced two regions of mtDNA, cytochrome b and D-loop, from 24 Novosibirsk foxes (8 foxes from each population) and compared them with corresponding sequences of native red foxes from Europe, Asia, Alaska and Western Canada, Eastern Canada, and the Western Mountains of the USA. We identified seven cytochrome b - D-loop haplotypes in Novosibirsk populations, four of which were previously observed in Eastern North America. The three remaining haplotypes differed by one or two base change from the most common haplotype in Eastern Canada. Φ(ST) analysis showed significant differentiation between Novosibirsk populations and red fox populations from all geographic regions except Eastern Canada. No haplotypes of Eurasian origin were identified in the Novosibirsk populations. These results are consistent with historical records indicating that the original breeding stock of farm-bred foxes originated from Prince Edward Island, Canada. Mitochondrial DNA data together with historical records indicate two stages in the selection of domesticated foxes: the first includes captive breeding for ~50 years with unconscious selection for behaviour; the second corresponds to over 50 further years of intensive selection for tame behaviour.

17.
Invest Ophthalmol Vis Sci ; 52(6): 2989-98, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21282582

ABSTRACT

PURPOSE: To examine the structure and expression of RPGRIP1 in dog retina. METHODS: Determination of the structural analysis and expression pattern of canine RPGRIP1 (cRPGRIP1) was based on cDNA amplification. Absolute quantification of the expression level of cRPGRIP1 splice variants was determined by qRT-PCR. Regulatory structures were examined by computational analysis of comparative genomics. RESULTS: cRPGRIP1 encompasses 25 exons that harbor a 3627-bp open reading frame (ORF) encoding a 1209-amino-acid (aa)-predicted protein. In addition to the main transcript, five full-length and several partial cRPGRIP1 isoforms were identified revealing four alternative 3'-terminal exons--24, 19a, 19c, and 19d--three of which could potentially produce C-terminally truncated proteins that lack the RPGR-interacting domain. A complex organization of the 5'-UTR for the cRPGRIP1 splice products have been described, with a common promoter driving multiple isoforms, including four full-length transcripts using the 3'-terminal exon 24. In addition, a potential alternative internal promoter was revealed to initiate at least two cRPGRIP1 splice variants sharing the same 3'-terminal exon 19c. Transcription initiation sites were highly supported by conserved arrangements of cis-elements predicted in a bioinformatic analysis of orthologous RPGRIP1 promoter regions. CONCLUSIONS: The use of alternative transcription start and termination sites results in substantial heterogeneity of cRPGRIP1 transcripts, many of which are likely to have tissue-specific expression. The identified exon-intron structure of cRPGRIP1 isoforms provides a basis for evaluating the gene defects underlying inherited retinal disorders in dogs.


Subject(s)
Alternative Splicing/genetics , Eye Proteins/genetics , Gene Expression Regulation/physiology , Retina/metabolism , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , DNA Primers/chemistry , Dogs , Exons/genetics , Eye Proteins/chemistry , Introns/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tissue Distribution
18.
Behav Genet ; 41(4): 593-606, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21153916

ABSTRACT

During the second part of the twentieth century, Belyaev selected tame and aggressive foxes (Vulpes vulpes), in an effort known as the "farm-fox experiment", to recapitulate the process of animal domestication. Using these tame and aggressive foxes as founders of segregant backcross and intercross populations we have employed interval mapping to identify a locus for tame behavior on fox chromosome VVU12. This locus is orthologous to, and therefore validates, a genomic region recently implicated in canine domestication. The tame versus aggressive behavioral phenotype was characterized as the first principal component (PC) of a PC matrix made up of many distinct behavioral traits (e.g. wags tail; comes to the front of the cage; allows head to be touched; holds observer's hand with its mouth; etc.). Mean values of this PC for F1, backcross and intercross populations defined a linear gradient of heritable behavior ranging from tame to aggressive. The second PC did not follow such a gradient, but also mapped to VVU12, and distinguished between active and passive behaviors. These data suggest that (1) there are at least two VVU12 loci associated with behavior; (2) expression of these loci is dependent on interactions with other parts of the genome (the genome context) and therefore varies from one crossbred population to another depending on the individual parents that participated in the cross.


Subject(s)
Behavior, Animal , Chromosome Mapping/methods , Foxes/genetics , Genetics, Behavioral , Animals , Animals, Domestic , Crosses, Genetic , Genetic Predisposition to Disease , Lod Score , Models, Genetic , Pedigree , Phenotype , Principal Component Analysis , Species Specificity
19.
PLoS One ; 5(10): e13219, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20949002

ABSTRACT

BACKGROUND: Canine hip dysplasia (HD) is a common polygenic trait characterized by hip malformation that results in osteoarthritis (OA). The condition in dogs is very similar to developmental dysplasia of the human hip which also leads to OA. METHODOLOGY/PRINCIPAL FINDINGS: A total of 721 dogs, including both an association and linkage population, were genotyped. The association population included 8 pure breeds (Labrador retriever, Greyhounds, German Shepherd, Newfoundland, Golden retriever, Rottweiler, Border Collie and Bernese Mountain Dog). The linkage population included Labrador retrievers, Greyhounds, and their crosses. Of these, 366 dogs were genotyped at ∼22,000 single nucleotide polymorphism (SNP) loci and a targeted screen across 8 chromosomes with ∼3,300 SNPs was performed on 551 dogs (196 dogs were common to both sets). A mixed linear model approach was used to perform an association study on this combined association and linkage population. The study identified 4 susceptibility SNPs associated with HD and 2 SNPs associated with hip OA. CONCLUSION/SIGNIFICANCE: The identified SNPs included those near known genes (PTPRD, PARD3B, and COL15A1) reported to be associated with, or expressed in, OA in humans. This suggested that the canine model could provide a unique opportunity to identify genes underlying natural HD and hip OA, which are common and debilitating conditions in both dogs and humans.


Subject(s)
Bone Diseases, Developmental/veterinary , Dog Diseases/genetics , Hip Joint/pathology , Osteoarthritis/genetics , Animals , Bone Diseases, Developmental/genetics , Chromosome Mapping , Dogs , Genetic Linkage , Polymorphism, Single Nucleotide
20.
Genomics ; 96(6): 362-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20887780

ABSTRACT

Fine mapping followed by candidate gene analysis of erd - a canine hereditary retinal degeneration characterized by aberrant photoreceptor development - established that the disease cosegregates with a SINE insertion in exon 4 of the canine STK38L/NDR2 gene. The mutation removes exon 4 from STK38L transcripts and is predicted to remove much of the N terminus from the translated protein, including binding sites for S100B and Mob proteins, part of the protein kinase domain, and a Thr-75 residue critical for autophosphorylation. Although known to have roles in neuronal cell function, the STK38L pathway has not previously been implicated in normal or abnormal photoreceptor development. Loss of STK38L function in erd provides novel potential insights into the role of the STK38L pathway in neuronal and photoreceptor cell function, and suggests that genes in this pathway need to be considered as candidate genes for hereditary retinal degenerations.


Subject(s)
Exons/genetics , Genetic Linkage , Mutagenesis, Insertional , Protein Serine-Threonine Kinases/genetics , Retinal Degeneration/genetics , Short Interspersed Nucleotide Elements/genetics , Amino Acid Sequence , Animals , Base Sequence , Disease Models, Animal , Dogs , Humans , Molecular Sequence Data , Mutation , Photoreceptor Cells/metabolism , Radiation Hybrid Mapping , Retinaldehyde/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...