Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L639-L652, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31461316

ABSTRACT

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by progressive right ventricle (RV) failure due to elevated pulmonary artery pressures (PAP). In PAH, histologically complex vaso-occlusive lesions in the pulmonary vasculature contribute to elevated PAP. However, the mechanisms underlying dysfunction of the microvascular endothelial cells (MVECs) that comprise a significant portion of these lesions are not well understood. We recently showed that MVECs isolated from the Sugen/hypoxia (SuHx) rat experimental model of PAH (SuHx-MVECs) exhibit increases in migration/proliferation, mitochondrial reactive oxygen species (ROS; mtROS) production, intracellular calcium levels ([Ca2+]i), and mitochondrial fragmentation. Furthermore, quenching mtROS with the targeted antioxidant MitoQ attenuated basal [Ca2+]i, migration and proliferation; however, whether increased mtROS-induced [Ca2+]i entry affected mitochondrial morphology was not clear. In this study, we sought to better understand the relationship between increased ROS, [Ca2+]i, and mitochondrial morphology in SuHx-MVECs. We measured changes in mitochondrial morphology at baseline and following inhibition of mtROS, with the targeted antioxidant MitoQ, or transient receptor potential vanilloid-4 (TRPV4) channels, which we previously showed were responsible for mtROS-induced increases in [Ca2+]i in SuHx-MVECs. Quenching mtROS or inhibiting TRPV4 attenuated fragmentation in SuHx-MVECs. Conversely, inducing mtROS production in MVECs from normoxic rats (N-MVECs) increased fragmentation. Ca2+ entry induced by the TRPV4 agonist GSK1017920A was significantly increased in SuHx-MVECs and was attenuated with MitoQ treatment, indicating that mtROS contributes to increased TRPV4 activity in SuHx-MVECs. Basal and maximal respiration were depressed in SuHx-MVECs, and inhibiting mtROS, but not TRPV4, improved respiration in these cells. Collectively, our data show that, in SuHx-MVECs, mtROS production promotes TRPV4-mediated increases in [Ca2+]i, mitochondrial fission, and decreased mitochondrial respiration. These results suggest an important role for mtROS in driving MVEC dysfunction in PAH.


Subject(s)
Endothelial Cells/pathology , Hypoxia/complications , Indoles/toxicity , Lung/pathology , Mitochondria/pathology , Pulmonary Arterial Hypertension/pathology , Pyrroles/toxicity , Reactive Oxygen Species/metabolism , Angiogenesis Inhibitors/toxicity , Animals , Calcium/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Lung/metabolism , Male , Mitochondria/metabolism , Oxygen Consumption , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/metabolism , Rats , Rats, Wistar , Vascular Remodeling
2.
Cell Chem Biol ; 24(6): 673-684.e4, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28479296

ABSTRACT

Malonyl-coenzyme A (malonyl-CoA) is a central metabolite in mammalian fatty acid biochemistry generated and utilized in the cytoplasm; however, little is known about noncanonical organelle-specific malonyl-CoA metabolism. Intramitochondrial malonyl-CoA is generated by a malonyl-CoA synthetase, ACSF3, which produces malonyl-CoA from malonate, an endogenous competitive inhibitor of succinate dehydrogenase. To determine the metabolic requirement for mitochondrial malonyl-CoA, ACSF3 knockout (KO) cells were generated by CRISPR/Cas-mediated genome editing. ACSF3 KO cells exhibited elevated malonate and impaired mitochondrial metabolism. Unbiased and targeted metabolomics analysis of KO and control cells in the presence or absence of exogenous malonate revealed metabolic changes dependent on either malonate or malonyl-CoA. While ACSF3 was required for the metabolism and therefore detoxification of malonate, ACSF3-derived malonyl-CoA was specifically required for lysine malonylation of mitochondrial proteins. Together, these data describe an essential role for ACSF3 in dictating the metabolic fate of mitochondrial malonate and malonyl-CoA in mammalian metabolism.


Subject(s)
Coenzyme A Ligases/metabolism , Malonates/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Processing, Post-Translational , Acylation , Animals , Cell Line , Coenzyme A Ligases/deficiency , Coenzyme A Ligases/genetics , Gene Knockout Techniques , Humans , Lipogenesis , Mice , Mutation , Organ Specificity , Oxidation-Reduction , Protein Engineering
3.
J Biol Chem ; 291(50): 26126-26137, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27780865

ABSTRACT

The relevance of mitochondrial phosphate carrier (PiC), encoded by SLC25A3, in bioenergetics is well accepted. However, little is known about the mechanisms mediating the cellular impairments induced by pathological SLC25A3 variants. To this end, we investigated the pathogenicity of a novel compound heterozygous mutation in SLC25A3 First, each variant was modeled in yeast, revealing that substituting GSSAS for QIP within the fifth matrix loop is incompatible with survival on non-fermentable substrate, whereas the L200W variant is functionally neutral. Next, using skin fibroblasts from an individual expressing these variants and HeLa cells with varying degrees of PiC depletion, PiC loss of ∼60% was still compatible with uncompromised maximal oxidative phosphorylation (oxphos), whereas lower maximal oxphos was evident at ∼85% PiC depletion. Furthermore, intact mutant fibroblasts displayed suppressed mitochondrial bioenergetics consistent with a lower substrate availability rather than phosphate limitation. This was accompanied by slowed proliferation in glucose-replete medium; however, proliferation ceased when only mitochondrial substrate was provided. Both mutant fibroblasts and HeLa cells with 60% PiC loss showed a less interconnected mitochondrial network and a mitochondrial fusion defect that is not explained by altered abundance of OPA1 or MFN1/2 or relative amount of different OPA1 forms. Altogether these results indicate that PiC depletion may need to be profound (>85%) to substantially affect maximal oxphos and that pathogenesis associated with PiC depletion or loss of function may be independent of phosphate limitation when ATP requirements are not high.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation, Missense , Oxidative Phosphorylation , Phosphate Transport Proteins/metabolism , Amino Acid Substitution , Cell Survival , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/genetics , Phosphate Transport Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Plant Cell Physiol ; 57(5): 919-32, 2016 May.
Article in English | MEDLINE | ID: mdl-26903527

ABSTRACT

The glycine decarboxylase complex (GDC) plays a critical role in the photorespiratory C2 cycle of C3 species by recovering carbon following the oxygenation reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase. Loss of GDC from mesophyll cells (MCs) is considered a key early step in the evolution of C4 photosynthesis. To assess the impact of preferentially reducing GDC in rice MCs, we decreased the abundance of OsGDCH (Os10g37180) using an artificial microRNA (amiRNA) driven by a promoter that preferentially drives expression in MCs. GDC H- and P-proteins were undetectable in leaves of gdch lines. Plants exhibited a photorespiratory-deficient phenotype with stunted growth, accelerated leaf senescence, reduced chlorophyll, soluble protein and sugars, and increased glycine accumulation in leaves. Gas exchange measurements indicated an impaired ability to regenerate ribulose 1,5-bisphosphate in photorespiratory conditions. In addition, MCs of gdch lines exhibited a significant reduction in chloroplast area and coverage of the cell wall when grown in air, traits that occur during the later stages of C4 evolution. The presence of these two traits important for C4 photosynthesis and the non-lethal, down-regulation of the photorespiratory C2 cycle positively contribute to efforts to produce a C4 rice prototype.


Subject(s)
Gene Expression Regulation, Plant , Glycine Decarboxylase Complex/metabolism , Oryza/genetics , Photosynthesis , Carbon Cycle , Cell Respiration , Chloroplasts/metabolism , Gene Knockdown Techniques , Glycine Decarboxylase Complex/genetics , Light , MicroRNAs/genetics , Oryza/enzymology , Oryza/physiology , Oryza/radiation effects , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...