Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 104(4): 1054-1066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38168734

ABSTRACT

Diadromous fish have exhibited a dramatic decline since the end of the 20th century. The allis shad (Alosa alosa) population in the Gironde-Garonne-Dordogne (GGD) system, once considered as a reference in Europe, remains low despite a fishing ban in 2008. One hypothesis to explain this decline is that the downstream migration and growth dynamics of young stages have changed due to environmental modifications in the rivers and estuary. We retrospectively analysed juvenile growth and migration patterns using otoliths from adults caught in the GGD system 30 years apart during their spawning migration, in 1987 and 2016. We coupled otolith daily growth increments and laser ablation inductively-coupled plasma mass spectrometry measurements of Sr:Ca, Ba:Ca, and Mn:Ca ratios along the longest growth axis from hatching to an age of 100 days (i.e., during the juvenile stage). A back-calculation allowed us to estimate the size of juveniles at the entrance into the brackish estuary. Based on the geochemistry data, we distinguished four different zones that juveniles encountered during their downstream migration: freshwater, fluvial estuary, brackish estuary, and lower estuary. We identified three migration patterns during the first 100 days of their life: (a) Individuals that reached the lower estuary zone, (b) individuals that reached the brackish estuary zone, and (c) individuals that reached the fluvial estuary zone. On average, juveniles from the 1987 subsample stayed slightly longer in freshwater than juveniles from the 2016 subsample. In addition, juveniles from the 2016 subsample entered the brackish estuary at a smaller size. This result suggests that juveniles from the 2016 subsample might have encountered more difficult conditions during their downstream migration, which we attribute to a longer exposure to the turbid maximum zone. This assumption is supported by the microchemical analyses of the otoliths, which suggests based on wider Mn:Ca peaks that juveniles in 2010s experienced a longer period of physiological stress during their downstream migration than juveniles in 1980s. Finally, juveniles from the 2016 subsample took longer than 100 days to exit the lower estuary than we would have expected from previous studies. Adding a new marker (i.e., Ba:Ca) helped us refine the interpretation of the downstream migration for each individual.


Subject(s)
Fresh Water , Rivers , Animals , Retrospective Studies , France/epidemiology , Europe , Fishes
2.
J Fish Biol ; 98(1): 112-131, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32984981

ABSTRACT

The ecology of the young stages of allis shad Alosa alosa is poorly documented, although they can be exposed to many pressures during their freshwater phase and their downstream migration. When passing through systems such as the Gironde-Garonne-Dordogne watershed (GGD, SW France), they can be subjected to high temperatures and low levels of oxygen (hypoxia). The aim of this work is to assess the tolerance of young Alosa alosa at four ages (c. 10, 30, 60 and 85 days old) by challenging them to different temperatures (18, 22, 26 and 28°C) together with decreasing oxygen saturation levels (from 100% to 30%). Survival of the 10-day-old individuals was not influenced by oxy-thermic conditions, but high stress levels were detected and perhaps this age class was too fragile regarding the constraint of the experimental design. Survival at 30 and at 60 days old was negatively influenced by the highest temperatures tested alone (from 26°C and from 28°C, respectively) but no effect was detected at 85 days old up to 28°C. A combined effect of temperature and oxygen level was highlighted, with heat accelerating survival decrease when associated with oxygen level depletion: essentially, survival was critical (<50%) at 30 days old at temperature ≥22°C together with 30% O2 ; at 60 days old, at temperature = 28°C with 30% O2 ; at 85 days old, at temperature ≥26°C with ≤40% O2 . Tolerance to oxy-thermic pressures appeared to be greater among the migratory ages (60 and 85 days old) than among the 30-day-old group. Based on environmental data recorded in the GGD system and on our experimental results, an exploratory analysis allowed a discussion of the possible impact of past oxy-thermic conditions on the local population dynamics between 2005 and 2018. The oxy-thermic conditions that may affect Alosa alosa at ages when they migrate downstream (60 and 85 days old) were not frequently recorded in this period, except in cases of extreme episodes of heat together with hypoxia that occurred in some years, in summertime in the turbidity maximum zone of the Gironde estuary (particularly in the year 2006). Interestingly, oxy-thermic conditions that are likely to threaten the 30-day-old individuals occurred more frequently in the lower freshwater parts of the GGD system between the years 2005 and 2018. In the context of climate change, a general increase in temperature is predicted, as well as more frequent and severe hypoxic events, therefore we suggest that local Alosa alosa population recruitment could encounter critical oxy-thermic conditions more frequently in the future if no adaptive management of water resources occurs.


Subject(s)
Fishes/physiology , Oxygen/pharmacology , Stress, Physiological/physiology , Temperature , Animals , Climate Change , Estuaries , France/epidemiology , Oxygen/metabolism , Population Dynamics , Stress, Physiological/drug effects
3.
Environ Sci Pollut Res Int ; 27(4): 3726-3745, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31020527

ABSTRACT

The European sturgeon, Acipenser sturio, is a highly endangered species that almost disappeared in the last decades. Thanks to yearly restocking of the population, this species is still found in the Gironde estuary (France), where juveniles grow during several years before leaving to the ocean. The aims of this study were to evaluate the pressure exerted on these fish by known organic and inorganic contaminants during their stay at the Gironde estuary, and to get information on the fish's health in this context. Monthly captures over the year 2014 provided 87 fish from the cohorts 2012 and 2013 mainly, and from cohorts 2008, 2009, and 2011, all fish born in hatchery. We report the very first analyses of contaminant levels and of biological markers measured in the blood of these fish. Low inorganic contamination was found, composed of seven metals mainly Zn (< 5 µg mL-1), Fe (< 1.5 µg mL-1), Cu (< 0.8 µg mL-1), Se (< 0.8 µg mL-1), As (< 0.25 µg mL-1), Co (< 0.14 µg mL-1), and Mn (< 0.03 µg mL-1). Concerning persistent organic contaminants, the sum of seven PCBs varied from 1 to 10 ng g-1 plasma, that of eight OCPs from 0.1 to 1 ng g-1, and that of eight PBDEs from 10 to 100 pg g-1. Higher levels of contaminants were measured during spring as compared to summer. The sex steroid hormone plasma levels (estradiol, testosterone, and 11-ketotestosterone) were quite low, which was predictable for juveniles. The transcription of reproduction-involved genes (EstR, AR, LHR, sox9) in blood cells was demonstrated for the first time. Some of them were correlated with organic contaminant levels PCBs and OCPs. Other gene transcriptions (sodCu and bax) were correlated with PCBs and OCPs. However, the DNA damage level measured here as comet tail DNA and micronuclei ratio in red blood cells were in the very low range of the values commonly obtained in fish from pristine areas. The data presented here can serve as a reference base for future monitoring of this population of sturgeons.


Subject(s)
Estuaries , Water Pollutants, Chemical , Animals , Endangered Species , Fishes , France , Water Pollutants, Chemical/analysis
4.
Ecol Evol ; 9(12): 7017-7029, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380030

ABSTRACT

The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next-generation sequencing approaches have prompted the transition to genome-wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double-digest restriction-associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild-born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.

5.
J Acoust Soc Am ; 124(4): EL243-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19062793

ABSTRACT

Most fish cannot hear frequencies above 3 kHz, but a few species belonging to the subfamily Alosinae (family Clupeidae) can detect intense ultrasound. The response of adult specimens of the European allis shad (Alosa alosa) to sinusoidal ultrasonic pulses at 70 and 120 kHz is tested. The fish showed an intensity-graded response to the ultrasonic pulses with a response threshold between 161 and 167 dB re 1 microPa (pp) for both frequencies. These response thresholds are similar to thresholds derived from juvenile American shad (Alosa sapidissima) in previous studies, supporting the suggestion that these members of Alosinae have evolved a dedicated ultrasound detector adapted to detect and respond to approaching echolocating toothed whales.


Subject(s)
Echolocation , Fishes/physiology , Swimming , Ultrasonics , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Threshold , Cetacea/physiology , Female , Male , Predatory Behavior , Time Factors , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...