Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Rev Microbiol ; 16(3): 125-142, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29430005

ABSTRACT

Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.


Subject(s)
Flaviviridae/physiology , Virus Replication/physiology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Flaviviridae/drug effects , Gene Expression Regulation, Viral/physiology , Humans , RNA, Viral , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
2.
Curr Opin Virol ; 20: 47-54, 2016 10.
Article in English | MEDLINE | ID: mdl-27648486

ABSTRACT

Dengue virus (DENV) is a human threat of increasing importance. Although a tetravalent vaccine has been recently approved, owing to limited efficacy there is still an urgent need for antiviral drugs to prevent or treat DENV infections. Traditionally, antiviral drug discovery has focused on molecules targeting viral factors. However, thus far the identification of direct-acting antiviral drugs with potent DENV pan-serotypic activity has been problematic. An alternative are host-targeting antiviral drugs that hold great promise for broad-spectrum activity. In this review, we summarize cellular factors and pathways required by DENV for efficient replication and in principle suitable for antiviral therapy, including host-directed inhibitors that have even been advanced into clinical trials.


Subject(s)
Antiviral Agents/isolation & purification , Dengue Virus/pathogenicity , Drug Discovery/methods , Host-Pathogen Interactions , Humans
3.
Expert Rev Vaccines ; 15(4): 467-82, 2016.
Article in English | MEDLINE | ID: mdl-26577689

ABSTRACT

Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Dengue Vaccines/immunology , Dengue Vaccines/isolation & purification , Dengue Virus/immunology , Dengue/immunology , Dengue/pathology , Animals , Antibodies, Neutralizing/immunology , Humans
4.
Antimicrob Agents Chemother ; 59(2): 1100-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25487800

ABSTRACT

Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations.


Subject(s)
Dengue Virus/drug effects , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Cell Line , Dengue Virus/enzymology , HIV-1/drug effects , Humans , Molecular Docking Simulation , Virus Replication/drug effects
5.
J Virol ; 88(21): 12422-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25122793

ABSTRACT

UNLABELLED: The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE: The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE.


Subject(s)
Apolipoproteins E/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Virus Assembly , Cell Line , Humans , Protein Binding
6.
J Virol ; 88(19): 11540-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056895

ABSTRACT

UNLABELLED: Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. IMPORTANCE: Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the mode of action of ST-148, a small-molecule capsid inhibitor with potent antiviral activity against all DV serotypes. Our results demonstrate that ST-148 stabilizes capsid protein self-interaction, thereby likely perturbing assembly and disassembly of viral nucleocapsids by inducing structural rigidity. This, in turn, might interfere with the release of viral RNA from incoming nucleocapsids (uncoating) as well as assembly of progeny virus particles. As previously reported for other enveloped viruses, we propose the capsid as a novel tractable target for flavivirus inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , Capsid/drug effects , Dengue Virus/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Thiadiazoles/pharmacology , Virus Assembly/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Capsid/chemistry , Capsid Proteins/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Cricetinae , Crystallography, X-Ray , Dengue Virus/chemistry , Dengue Virus/physiology , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/virology , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Molecular Docking Simulation , Molecular Sequence Data , Sequence Alignment , Thiadiazoles/chemistry , Vero Cells , Virion/chemistry , Virion/drug effects , Virus Internalization/drug effects , Virus Release/drug effects
7.
Virus Res ; 184: 39-43, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24583230

ABSTRACT

The aim of the present study was to analyze the influence of virus origin, mammalian or mosquito cell-derived, on antiviral susceptibility of DENV-2 to entry inhibitors and the association of this effect with any alteration in the mode of entry into the cell. To this end, ten serial passages of DENV-2 were performed in mosquito C6/36 cells or monkey Vero cells and the antiviral susceptibility of each virus passage to sulfated polysaccharides (SPs), like heparin and carrageenans, was evaluated by a virus plaque reduction assay. After serial passaging in Vero cells, DENV-2 became increasingly resistant to SP inhibition whereas the antiviral susceptibility was not altered in virus propagated in C6/36 cells. The change in antiviral susceptibility was associated to a differential mode of entry into the host cell. The route of endocytic entry for productive Vero cell infection was altered from a non-classical clathrin independent pathway for C6/36-grown virus to a clathrin-mediated endocytosis when the virus was serially propagated in Vero cells. Our results show the impact of the cellular system used for successive propagation of DENV on the initial interaction between the host cell and the virion in the next round of infection and the relevant consequences it might have during the in vitro evaluation of entry inhibitors.


Subject(s)
Adaptation, Biological , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/growth & development , Drug Resistance, Viral , Virus Internalization/drug effects , Animals , Carrageenan/pharmacology , Cell Line , Chlorocebus aethiops , Culicidae , DNA Mutational Analysis , Endocytosis/drug effects , Heparin/pharmacology , Molecular Sequence Data , RNA, Viral/genetics , Sequence Analysis, DNA , Serial Passage , Viral Plaque Assay
8.
Adv Virus Res ; 88: 1-109, 2014.
Article in English | MEDLINE | ID: mdl-24373310

ABSTRACT

Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.


Subject(s)
Dengue Virus/physiology , Dengue/virology , Host-Pathogen Interactions , Adaptive Immunity , Dengue/epidemiology , Dengue/immunology , Dengue Virus/genetics , Dengue Virus/immunology , Humans , Immunity, Innate
9.
PLoS One ; 7(9): e44835, 2012.
Article in English | MEDLINE | ID: mdl-22970315

ABSTRACT

The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection.


Subject(s)
Dengue Virus/physiology , Endocytosis , Animals , Chlorocebus aethiops , Fluorescent Antibody Technique , Membrane Fusion , Vero Cells , Virus Replication , rab GTP-Binding Proteins/metabolism
10.
Virus Res ; 160(1-2): 173-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21708195

ABSTRACT

The entry of dengue virus-1 (DENV-1) strain Hawaii into mosquito C6/36 cells was analyzed using a variety of biochemical inhibitors together with electron microscopy. The treatment with ammonium chloride, chlorpromazine, dansylcadaverine and dynasore inhibited virus yields, determined by infectivity titrations, whereas nystatin and methyl-ß-cyclodextrin did not have any effect. The effect of the clathrin and dynamin inhibitors on DENV-1 entry was corroborated by detection of internalized virions using immunofluorescence staining. Furthermore, electron micrographs showed the incoming virions attached to electron-dense invaginations of the plasma membrane and within coated vesicles that resembled clathrin-coated pits and vesicles, respectively. The susceptibility to clathrin and dynamin inhibitors of clinical isolates from recent outbreaks was comparable to that shown by the cell culture-adapted reference strain. Similarly, DENV-3 strain H87 and DENV-4 strain 8124 were also inhibited in the presence of ammonium chloride, chlorpromazine and dynasore, allowing conclude that the infectious entry of DENV serotypes to mosquito cells occurs by low pH-dependent clathrin-mediated endocytosis.


Subject(s)
Dengue Virus/physiology , Virus Internalization , Animals , Cell Line , Clathrin-Coated Vesicles/virology , Culicidae , Dengue Virus/growth & development , Dengue Virus/ultrastructure , Endocytosis , Microscopy, Electron
11.
Nat Prod Commun ; 5(8): 1307-10, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20839642

ABSTRACT

The essential oils of seven aromatic plants from central west Argentina were isolated by steam distillation and analyzed by a gas chromatography/mass spectrometry technique. The oils were screened for cytotoxicity and in vitro inhibitory activity against herpes simplex virus type 1 (HSV-1), dengue virus type 2 (DENV-2) and Junin virus (JUNV). The oils showed a variable virucidal action according to the virus. JUNV was the least susceptible virus in comparison with HSV-1 and DENV-2. The better relationship between cytotoxicity and inhibitory activity was observed for the essential oil of Lantana grisebachiii (Seckt.) var. grisebachii against DENV-2 and HSV-1 with IC50 (inhibitory concentration 50%) values of 21.1 and 26.1 ppm, respectively. This effect was specific since the selectivity indices (ratio cytotoxicity/virucidal activity) were > 23.7 and > 19.1 for DENV-2 and HSV-1, respectively. Furthermore, the oil from L. grisebachii was also an effective inhibitor of HSV-2 and acyclovir resistant variants of herpes virus. This study demonstrates the effective and selective inhibitory activity of the essential oil from Lantana grisebachii against HSV and DENV by direct virus inactivation.


Subject(s)
Antiviral Agents/pharmacology , Lantana/chemistry , Oils, Volatile/isolation & purification , Plants, Medicinal/chemistry , Argentina , Dengue Virus/drug effects , Herpesvirus 1, Human/drug effects , Junin virus/drug effects , Oils, Volatile/pharmacology
12.
Cell Microbiol ; 11(10): 1533-49, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19523154

ABSTRACT

The entry of two dengue virus (DENV) serotypes into Vero cells was analysed using biochemical inhibitors, dominant negative mutants of cellular proteins involved in endocytic pathways, fluorescence microscopy and infectivity determinations. By treatment with dansylcadaverine and chlorpromazine and overexpression of a dominant negative form of the Eps15 protein, a clathrin-mediated endocytosis for productive DENV-1 internalization into Vero cells was demonstrated whereas the infectious entry of DENV-2 in the same cell system was independent of clathrin. Treatment with the inhibitors nystatin and methyl-beta-cyclodextrin, as well as transfection of Vero cells with dominant negative caveolin-1, had no effect on DENV-2 virus infection. It was also shown, by using the K44A mutant and the inhibitor dynasore, that dynamin was required for DENV-2 entry. Consequently, the infectious entry of DENV-2 into Vero cells occurs by a non-classical endocytic pathway independent of clathrin, caveolae and lipid rafts, but dependent on dynamin. By contrast, DENV-2 entry into A549 cells was clathrin-dependent, as previously reported in HeLa, C6/36 and BS-C-1 cells. Our results conclusively show, for the first time, a differential mode of infective entry for DENV-1 and DENV-2 into a common host cell, Vero cells, as well as alternative entry pathways for a given serotype, DENV-2, into different types of cells.


Subject(s)
Dengue Virus/physiology , Virus Internalization , Animals , Cell Line , Chlorocebus aethiops , Clathrin/metabolism , Dengue Virus/pathogenicity , Dynamins/metabolism , Endocytosis , Humans
13.
Virus Res ; 135(2): 203-12, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18462821

ABSTRACT

In the present paper the in vitro antiviral activity of dehydroepiandrosterone (DHEA), epiandrosterone (EA) and 16 synthetic derivatives against Junin virus (JUNV) replication in Vero cells was studied. DHEA and EA caused a selective inhibition of the replication of JUNV and other members of the Arenaviridae family such as Pichinde virus and Tacaribe virus. The compounds were not virucidal to cell-free JUNV. The impairment of viral replication was not due to an inhibitory effect of the steroids on virus adsorption or internalization. An inhibitory effect of the compounds on JUNV protein synthesis and both intracellular and extracellular virus production was demonstrated. A partial inhibitory action on cell surface expression of JUNV glycoprotein G1 was also detected on DHEA- and EA-treated cultures. Like DHEA and EA, three compounds obtained from EA by chemical synthesis showed selectivity indexes higher than ribavirin, the only antiviral compound that has shown partial efficacy against arenavirus infections.


Subject(s)
Androsterone/pharmacology , Antiviral Agents/pharmacology , Dehydroepiandrosterone/pharmacology , Junin virus/drug effects , Virus Replication/drug effects , Androsterone/analogs & derivatives , Androsterone/chemical synthesis , Androsterone/toxicity , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Chlorocebus aethiops , Dehydroepiandrosterone/analogs & derivatives , Dehydroepiandrosterone/chemical synthesis , Dehydroepiandrosterone/toxicity , Junin virus/physiology , Structure-Activity Relationship , Vero Cells , Viral Proteins/biosynthesis
14.
J Gen Virol ; 89(Pt 2): 474-484, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18198378

ABSTRACT

Entry of dengue virus 2 (DENV-2) into Aedes albopictus mosquito C6/36 cells was analysed using biochemical and molecular inhibitors, together with confocal and electron microscopy observations. Treatment with monodansylcadaverine, chlorpromazine, sucrose and ammonium chloride inhibited DENV-2 virus yield and protein expression, whereas nystatin, a blocker of caveolae-mediated endocytosis, did not have any effect. Using confocal microscopy, co-localization of DENV-2 E glycoprotein and the marker protein transferrin was observed at the periphery of the cytoplasm. To support the requirement of clathrin function for DENV-2 entry, overexpression of a dominant-negative mutant of Eps15 in C6/36 cells was shown to impair virus entry. The disruption of actin microfilaments by cytochalasin D also significantly affected DENV-2 replication. In contrast, microtubule disruption by colchicine treatment did not impair DENV-2 infectivity, suggesting that DENV-2 does not require transport from early to late endosomes for successful infection of mosquito cells. Furthermore, using transmission electron microscopy, DENV-2 particles of approximately 44-52 nm were found attached within electron-dense invaginations of the plasma membrane and in coated vesicles that resembled those of clathrin-coated pits and vesicles, respectively. Together, these results demonstrate for the first time that DENV-2 enters insect cells by receptor-mediated, clathrin-dependent endocytosis, requiring traffic through an acidic pH compartment for subsequent uncoating and completion of a productive infection.


Subject(s)
Aedes/virology , Clathrin/physiology , Dengue Virus/physiology , Endocytosis/physiology , Virus Internalization , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/virology , Actins/metabolism , Animals , Biological Transport , Chlorocebus aethiops , Clathrin/genetics , Cytochalasin D/pharmacology , Endocytosis/drug effects , Endosomes/virology , Microscopy, Confocal , Microtubules/drug effects , Microtubules/metabolism , Transferrin/ultrastructure , Vero Cells , Viral Envelope Proteins/ultrastructure , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...