Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Diabetes Obes Metab ; 25(11): 3268-3278, 2023 11.
Article in English | MEDLINE | ID: mdl-37493025

ABSTRACT

AIM: To investigate the use of synthetic preimplantation factor (sPIF) as a potential therapeutic tool for improving glucose-stimulated insulin secretion (GSIS), glucose tolerance and insulin sensitivity in the setting of diabetes. MATERIALS AND METHODS: We used a preclinical murine model of type 2 diabetes (T2D) induced by high-fat diet (HFD) feeding for 12 weeks. Saline or sPIF (1 mg/kg/day) was administered to mice by subcutaneously implanted osmotic mini-pumps for 25 days. Glucose tolerance, circulating insulin and C-peptide levels, and GSIS were assessed. In addition, ß-cells (Min-6) were used to test the effects of sPIF on GSIS and insulin-degrading enzyme (IDE) activity in vitro. The effect of sPIF on GSIS was also tested in human islets. RESULTS: GSIS was enhanced 2-fold by sPIF in human islets ex vivo. Furthermore, continuous administration of sPIF to HFD mice increased circulating levels of insulin and improved glucose tolerance, independently of hepatic insulin clearance. Of note, islets isolated from mice treated with sPIF exhibited restored ß-cell function. Finally, genetic (shRNA-IDE) or pharmacological (6bK) inactivation of IDE in Min-6 abolished sPIF-mediated effects on GSIS, showing that both the protein and its protease activity are required for its action. CONCLUSIONS: We conclude that sPIF is a promising secretagogue for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Insulysin , Islets of Langerhans , Mice , Humans , Animals , Insulin Secretion , Insulysin/metabolism , Insulysin/pharmacology , Mice, Obese , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Diet, High-Fat/adverse effects , Islets of Langerhans/metabolism
2.
Int J Nanomedicine ; 18: 8169-8185, 2023.
Article in English | MEDLINE | ID: mdl-38169997

ABSTRACT

Introduction: The development of new materials and tools for radiology is key to the implementation of this diagnostic technique in clinics. In this work, we evaluated the differential accumulation of peptide-functionalized GNRs in a transgenic animal model (APPswe/PSENd1E9) of Alzheimer's disease (AD) by computed tomography (CT) and measured the pharmacokinetic parameters and bioaccumulation of the nanosystem. Methods: The GNRs were functionalized with two peptides, Ang2 and D1, which conferred on them the properties of crossing the blood-brain barrier and binding to amyloid aggregates, respectively, thus making them a diagnostic tool with great potential for AD. The nanosystem was administered intravenously in APPswe/PSEN1dE9 model mice of 4-, 8- and 18-months of age, and the accumulation of gold nanoparticles was observed by computed tomography (CT). The gold accumulation and biodistribution were determined by atomic absorption. Results: Our findings indicated that 18-month-old animals treated with our nanosystem (GNR-D1/Ang2) displayed noticeable differences in CT signals compared to those treated with a control nanosystem (GNR-Ang2). However, no such distinctions were observed in younger animals. This suggests that our nanosystem holds the potential to effectively detect AD pathology. Discussion: These results support the future development of gold nanoparticle-based technology as a more effective and accessible alternative for the diagnosis of AD and represent a significant advance in the development of gold nanoparticle applications in disease diagnosis.


Subject(s)
Alzheimer Disease , Metal Nanoparticles , Nanotubes , Mice , Animals , Gold/chemistry , Bioaccumulation , Tissue Distribution , Metal Nanoparticles/chemistry , Peptides/chemistry , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid/metabolism , Tomography, X-Ray Computed , Nanotubes/chemistry , Tomography , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Disease Models, Animal , Brain/metabolism
3.
J Biomol NMR ; 75(8-9): 347-363, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34505210

ABSTRACT

The development of methyl transverse relaxation optimized spectroscopy has greatly facilitated the study of macromolecular assemblies by solution NMR spectroscopy. However, limited sample solubility and stability has hindered application of this technique to ongoing studies of complexes formed on membranes by the neuronal SNAREs that mediate neurotransmitter release and synaptotagmin-1, the Ca2+ sensor that triggers release. Since the 1H NMR signal of a tBu group attached to a large protein or complex can be observed with high sensitivity if the group retains high mobility, we have explored the use of this strategy to analyze presynaptic complexes involved in neurotransmitter release. For this purpose, we attached tBu groups at single cysteines of fragments of synaptotagmin-1, complexin-1 and the neuronal SNAREs by reaction with 5-(tert-butyldisulfaneyl)-2-nitrobenzoic acid (BDSNB), tBu iodoacetamide or tBu acrylate. The tBu resonances of the tagged proteins were generally sharp and intense, although tBu groups attached with BDSNB had a tendency to exhibit somewhat broader resonances that likely result because of the shorter linkage between the tBu and the tagged cysteine. Incorporation of the tagged proteins into complexes on nanodiscs led to severe broadening of the tBu resonances in some cases. However, sharp tBu resonances could readily be observed for some complexes of more than 200 kDa at low micromolar concentrations. Our results show that tagging of proteins with tBu groups provides a powerful approach to study large biomolecular assemblies of limited stability and/or solubility that may be applicable even at nanomolar concentrations.


Subject(s)
Neurons , SNARE Proteins , Macromolecular Substances , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
4.
Org Lett ; 23(17): 6900-6904, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34424718

ABSTRACT

It has been reported that DIC can react with OxymaPure to render an oxadiazole compound with the concomitant formation of HCN. Here we demonstrate that this reaction is not a feature of all carbodiimides but rather depends on the alkyl structure that flanks the two N atoms of the carbodiimide. Furthermore, we have identified two carbodiimides, TBEC and EDC·HCl, whose reaction with OxymaPure is exempt from HCN formation.

5.
Front Chem ; 8: 298, 2020.
Article in English | MEDLINE | ID: mdl-32391324

ABSTRACT

Cyclic depsipeptides constitute a fascinating class of natural products. Most of them are characterized by an ester formed between the ß-hydroxy function of Ser/Thr -and related amino acids- and the carboxylic group of the C-terminal amino acid. Less frequent are those where the thiol of Cys is involved rendering a thioester (cyclo thiodepsipeptides) and even less common are the cyclo depsipeptides with a phenyl ester coming from the side-chain of Tyr. Herein, the preparation of the later through a cyclative cleavage using the Fmoc-MeDbz/MeNbz-resin is described. This resin has previously reported for the synthesis of cyclo thiodepsipeptides and homodetic peptides. The use of that resin for the preparation of all these peptides is also summarized.

6.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970600

ABSTRACT

Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at the nanoscale. Herein we present a method to produce in an easy, straightforward process, nanopatterns of biomolecular ligands to study ligand⁻receptor processes involving multivalent interactions. We based our platform in self-assembled diblock copolymers composed of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) that form PMMA nanodomains in a closed-packed hexagonal arrangement. Upon PMMA selective functionalization, biomolecular nanopatterns over large areas are produced. Nanopattern size and spacing can be controlled by the composition of the block-copolymer selected. Nanopatterns of cell adhesive peptides of different size and spacing were produced, and their impact in integrin receptor clustering and the formation of cell focal adhesions was studied. Cells on ligand nanopatterns showed an increased number of focal contacts, which were, in turn, more matured than those found in cells cultured on randomly presenting ligands. These findings suggest that our methodology is a suitable, versatile tool to study and control receptor clustering signaling and downstream cell behavior through a surface-based ligand patterning technique.

7.
Colloids Surf B Biointerfaces ; 166: 323-329, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29625410

ABSTRACT

We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Spectrum Analysis, Raman
8.
Colloids Surf B Biointerfaces ; 158: 25-32, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28662391

ABSTRACT

In this work, the potential application of gold nanoparticles for GLP-1 analogues delivery was studied. For this purpose, the original sequence of the incretin GLP-1 was slightly modified in the C-terminal region by adding a cysteine residue to facilitate conjugation to the gold surface. The interaction between peptides and gold nanoparticles and also the colloid stability of the conjugates were studied by UV-vis spectrophotometry, TEM, IR and XPS spectroscopy. Moreover, the permeability of these conjugates was assayed using a Caco-2/goblet monolayer model. On the basis of the stability and permeability results, one of the conjugates was chosen to be administered intraperitoneally to normoglycemic rats. The intraperitoneal delivery of the GLP-1 analogue using gold nanoparticles led to decrease levels of blood glucose in the same way as native GLP-1, thereby demonstrating that the formulation of the analogue is stable in physiological conditions and maintains the activity of this incretin.


Subject(s)
Glucagon-Like Peptide 1/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Caco-2 Cells , Drug Delivery Systems/methods , Humans , Incretins/chemistry , Solid-Phase Synthesis Techniques
9.
Amino Acids ; 48(2): 419-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26403847

ABSTRACT

2-MeTHF and CPME were evaluated as greener alternatives for the most employed solvents in peptide synthesis. The ability of these solvents to dissolve amino acid derivatives and a range of coupling reagents were evaluated as well as the swelling of polystyrene and polyethylene glycol resins. In addition, racemization and coupling efficiencies were also determined. We concluded that the use of 2-MeTHF with combination of DIC/OxymaPure gave the lowest racemization level during stepwise synthesis of Z-Phg-Pro-NH2 and the highest purity during SPPS of Aib-enkephalin pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH2).


Subject(s)
Furans/chemistry , Methyl Ethers/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques , Drug Design
10.
Org Lett ; 17(24): 6182-5, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26654835

ABSTRACT

The first synthesis and biological activity of a teixobactin analogue is reported. Substitution of the unusual L-allo-enduracididine residue by the naturally occurring L-arginine was achieved, and the analogue gave an activity trend similar to that of teixobactin (against Gram-postive bacteria) and meropenem, which was approved by the FDA in 1996. The synthetic route used allows for the synthesis of the natural product as well as the development of a program of medicinal chemistry.


Subject(s)
Depsipeptides/chemical synthesis , Depsipeptides/pharmacology , Arginine/chemistry , Biological Products/chemistry , Depsipeptides/chemistry , Meropenem , Molecular Structure , Stereoisomerism , Thienamycins/pharmacology
11.
J Colloid Interface Sci ; 453: 260-269, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25989057

ABSTRACT

Anisotropic and branched gold nanoparticles have great potential in optical, chemical and biomedical applications. However their syntheses involve multi-step protocols and the use of cytotoxic agents. Here, we report a novel one-step method for the preparation of gold nanostructures using only Hantzsch 1,4-dihydropyridines as mild reducing agents. The substituent pattern of the dihydropyridine nucleus was closely related to the ease of formation, morphology and stability of the nanoparticles. We observed nanostructures such as spheres, rods, triangles, pentagons, hexagons, flowers, stars and amorphous. We focused mainly on the synthesis and characterization of well-defined gold nanostars, which were produced quickly at room temperature (25°C) in high yield and homogeneity. These nanostars presented an average size of 68 nm with mostly four or six tips. Based on our findings, we propose that the growth of the nanostars occurs in the (111) lattice plane due to a preferential deposition of the gold atoms in the early stages of particle formation. Furthermore, the nanostars were easily modified with peptides remaining stable for more than six months in their colloidal state and showing a better stability than unmodified nanostars in different conditions. We report a new approach using dihydropyridines for the straightforward synthesis of gold nanostructures with controlled shape, feasible for use in future applications.


Subject(s)
Dihydropyridines/chemistry , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Reducing Agents/chemistry , Nanotechnology/methods
12.
Org Biomol Chem ; 13(8): 2393-8, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25563654

ABSTRACT

To date, DMF has been considered as the only solvent suitable for peptide synthesis. Here we demonstrate the capacity of THF and ACN, which are friendlier solvents than DMF, to yield the product in higher purity than DMF. Using various peptide models, both THF and ACN reduced racemization in solution-phase and solid-phase synthesis when compared with DMF. Moreover, the use of ACN and THF in the solid-phase peptide synthesis of hindered peptides, such as Aib-enkephalin pentapeptide and Aib-ACP decapeptide, in combination with a complete polyethylene glycol resin (ChemMatrix), gave a better coupling efficiency than DMF.


Subject(s)
Acetonitriles/chemistry , Dimethylformamide/chemistry , Furans/chemistry , Peptides/chemical synthesis , Molecular Structure , Peptides/chemistry
13.
Amino Acids ; 46(8): 1827-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24770904

ABSTRACT

Here we review the strategies for the solid-phase synthesis of peptides starting from the side chain of the C-terminal amino acid. Furthermore, we provide experimental data to support that C-terminal and side-chain syntheses give similar results in terms of purity. However, the stability of the two bonds that anchor the peptide to the polymer may determine the overall yield and this should be considered for the large-scale production of peptides. In addition, resins/linkers which do not subject to side reactions can be preferred for some peptides.


Subject(s)
Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acid Sequence , Chromatography, High Pressure Liquid , Molecular Structure
14.
PLoS One ; 8(8): e70881, 2013.
Article in English | MEDLINE | ID: mdl-23940658

ABSTRACT

The physiological functions of PrP(C) remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR) located in the central domain (CD, 95-133) of PrP(C) are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110) and a hydrophobic region (HR, 112-133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.


Subject(s)
Neurons/physiology , Peptide Fragments/physiology , PrPC Proteins/physiology , Amino Acid Sequence , Animals , Apoptosis , Benzothiazoles , Caspase 3/metabolism , Cell Membrane Permeability/drug effects , Cells, Cultured , Dimyristoylphosphatidylcholine/chemistry , Enzyme Activation , Fluorescent Dyes/chemistry , Kinetics , Lipid Bilayers/chemistry , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Molecular Mimicry , Molecular Sequence Data , Neurons/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , PrPC Proteins/chemistry , PrPC Proteins/pharmacology , Primary Cell Culture , Protein Multimerization , Protein Structure, Tertiary , Thiazoles/chemistry
15.
Bioconjug Chem ; 23(3): 399-408, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22284226

ABSTRACT

Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their biocompatibility, size, and ease of characterization, as well as an extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for biomedical applications, including drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we studied ex vivo distribution of the conjugate C(AuNP)-LPFFD for its potential uses in the treatment of Alzheimer's disease. In this study, we covalently labeled the conjugate with [(18)F]-fluorobenzoate to study the in vivo distribution of the AuNP by positron emission tomography (PET). After intravenous administration in rat, the highest concentration of the radiolabeled conjugate was found in the bladder and urine with a lower proportion in the intestine, demonstrating progressive accumulation compatible with biliary excretion of the conjugate. The conjugate also accumulated in the liver and spleen. PET imaging allowed us to study the in vivo biodistribution of the AuNPs in a noninvasive and sensitive way using a reduced number of animals. Our results show that AuNPs can be covalently and radioactively labeled for PET biodistribution studies.


Subject(s)
Fluorine Radioisotopes/pharmacokinetics , Gold/chemistry , Metal Nanoparticles , Peptides/pharmacokinetics , Animals , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Male , Microscopy, Electron, Transmission , Peptides/chemistry , Positron-Emission Tomography , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance , Tissue Distribution
16.
Nanomedicine ; 8(4): 432-9, 2012 May.
Article in English | MEDLINE | ID: mdl-21856276

ABSTRACT

Cell adhesion onto bioengineered surfaces is affected by a number of variables, including the former substrate derivatization process. In this investigation, we studied the correlation between cell adhesion and cell-adhesive ligand surface concentration and organization due to substrate modification. For this purpose, Arg-Gly-Asp (RGD) gradient surfaces were created on poly(methyl methacrylate) substrates by continuous hydrolysis and were then grafted with biotin-PEG-RGD molecules. Cell culture showed that adhesion behavior changes in a nonlinear way in the narrow range of RGD surface densities assayed (2.8 to 4.4 pmol/cm(2)), with a threshold value of 4.0 pmol/cm(2) for successful cell attachment and spreading. This nonlinear dependence may be explained by nonhomogeneous RGD surface distribution at the nanometre scale, conditioned by the stochastic nature of the hydrolysis process. Atomic force microscopy analysis of the gradient surface showed an evolution of surface morphology compatible with this hypothesis. FROM THE CLINICAL EDITOR: The authors observed by AFM nonlinear dependence of cell adhesion on RGD gradient surfaces with different surface densities. The nonlinear characteristics may be explained by non-homogeneous RGD surface distribution at the nanometer scale, conditioned by the stochastic nature of the hydrolysis process.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesions/drug effects , Oligopeptides/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Adhesion/drug effects , Dose-Response Relationship, Drug , Focal Adhesions/metabolism , Mice , NIH 3T3 Cells , Oligopeptides/pharmacokinetics
17.
J Pept Sci ; 15(10): 629-33, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19634177

ABSTRACT

This manuscript shows that ACN can be an excellent choice for the coupling of hindered amino acids as illustrated by the coupling of Fmoc-amino acids on free amino acids anchored on a BAL synthesis. Furthermore, ACN can be a good alternative for solid-phase peptide synthesis in the absence of DMF (washings, removal of Fmoc, and coupling).


Subject(s)
Acetonitriles/chemistry , Peptides/chemical synthesis , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Amino Acids/chemistry , Fluorenes/chemistry , Solvents
18.
J Org Chem ; 71(19): 7196-204, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16958512

ABSTRACT

Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show antitumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution.


Subject(s)
Antineoplastic Agents/chemical synthesis , Depsipeptides/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Mollusca/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...