Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Genet Med ; 26(7): 101144, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38641994

ABSTRACT

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.

2.
Eur Neuropsychopharmacol ; 83: 32-42, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579661

ABSTRACT

Neurosciences clinical trials continue to have notoriously high failure rates. Appropriate outcomes selection in early clinical trials is key to maximizing the likelihood of identifying new treatments in psychiatry and neurology. The field lacks good standards for designing outcome strategies, therefore The Outcomes Research Group was formed to develop and promote good practices in outcome selection. This article describes the first published guidance on the standardization of the process for clinical outcomes in neuroscience. A minimal step process is defined starting as early as possible, covering key activities for evidence generation in support of content validity, patient-centricity, validity requirements and considerations for regulatory acceptance. Feedback from expert members is provided, regarding the risks of shortening the process and examples supporting the recommended process are summarized. This methodology is now available to researchers in industry, academia or clinics aiming to implement consensus-based standard practices for clinical outcome selection, contributing to maximizing the efficiency of clinical research.


Subject(s)
Clinical Trials as Topic , Drug Development , Neurosciences , Humans , Clinical Trials as Topic/standards , Clinical Trials as Topic/methods , Neurosciences/standards , Neurosciences/methods , Drug Development/standards , Drug Development/methods , Research Design/standards , Outcome Assessment, Health Care/standards , Outcome Assessment, Health Care/methods , Treatment Outcome
3.
Innov Clin Neurosci ; 21(1-3): 52-60, 2024.
Article in English | MEDLINE | ID: mdl-38495603

ABSTRACT

The 1983 Orphan Drug Act in the United States (US) changed the landscape for development of therapeutics for rare or orphan diseases, which collectively affect approximately 300 million people worldwide, half of whom are children. The act has undoubtedly accelerated drug development for orphan diseases, with over 6,400 orphan drug applications submitted to the US Food and Drug Administration (FDA) from 1983 to 2023, including 350 drugs approved for over 420 indications. Drug development in this population is a global and collaborative endeavor. This position paper of the International Society for Central Nervous System Clinical Trials and Methodology (ISCTM) describes some potential best practices for the involvement of key stakeholder feedback in the drug development process. Stakeholders include advocacy groups, patients and caregivers with lived experience, public and private research institutions (including academia and pharmaceutical companies), treating clinicians, and funders (including the government and independent foundations). The authors articulate the challenges of drug development in orphan diseases and propose methods to address them. Challenges range from the poor understanding of disease history to development of endpoints, targets, and clinical trials designs, to finding solutions to competing research priorities by involved parties.

4.
Mol Genet Metab ; 140(3): 107707, 2023 11.
Article in English | MEDLINE | ID: mdl-37883914

ABSTRACT

PURPOSE: The NIH Undiagnosed Diseases Program (UDP) aims to provide diagnoses to patients who have previously received exhaustive evaluations yet remain undiagnosed. Patients undergo procedural anesthesia for deep phenotyping for analysis with genomic testing. METHODS: A retrospective chart review was performed to determine the safety and benefit of procedural anesthesia in pediatric patients in the UDP. Adverse perioperative events were classified as anesthesia-related complications or peri-procedural complications. The contribution of procedures performed under anesthesia to arriving at a diagnosis was also determined. RESULTS: From 2008 to 2020, 249 pediatric patients in the UDP underwent anesthesia for diagnostic procedures. The majority had a severe systemic disease (American Society for Anesthesiology status III, 79%) and/or a neurologic condition (91%). Perioperative events occurred in 45 patients; six of these were attributed to anesthesia. All patients recovered fully without sequelae. Nearly half of the 249 patients (49%) received a diagnosis, and almost all these diagnoses (88%) took advantage of information gleaned from procedures performed under anesthesia. CONCLUSIONS: The benefits of anesthesia involving multiple diagnostic procedures in a well-coordinated, multidisciplinary, research setting, such as in the pediatric UDP, outweigh the risks.


Subject(s)
Anesthesia , Anesthesiology , Undiagnosed Diseases , Child , Humans , United States/epidemiology , Undiagnosed Diseases/etiology , Retrospective Studies , Anesthesia/adverse effects , Risk Assessment , Uridine Diphosphate
5.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36965478

ABSTRACT

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Subject(s)
Alternative Splicing , DNA-Binding Proteins , Paraparesis, Spastic , Transcription Factors , Paraparesis, Spastic/genetics , Humans , DNA-Binding Proteins/genetics , Transcription Factors/genetics , HeLa Cells , Protein Isoforms/genetics , RNA-Seq , Male , Female , Pedigree , Alleles , Infant , Child, Preschool , Child , Adolescent , Protein Structure, Secondary , RNA, Small Nuclear/genetics
6.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765070

ABSTRACT

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

7.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Article in English | MEDLINE | ID: mdl-36709532

ABSTRACT

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Subject(s)
Gangliosidosis, GM1 , Lysosomal Storage Diseases , Male , Female , Animals , Mice , Gangliosidosis, GM1/genetics , Mice, Knockout , beta-Galactosidase/genetics , Lysosomal Storage Diseases/genetics , Exons
8.
J Child Neurol ; 36(12): 1078-1085, 2021 10.
Article in English | MEDLINE | ID: mdl-34472416

ABSTRACT

INTRODUCTION: The present study aimed to evaluate the feasibility and efficacy of CogmedRM, a computerized, home-based working memory (WM) training program, in children with NF1. METHOD: A pre-post design was used to evaluate changes in performance-based measures of attention and WM, and parent-completed ratings of executive functioning. Children meeting eligibility criteria completed CogmedRM over 9 weeks. Primary outcomes included compliance statistics and change in attention and WM scores. RESULTS: Thirty-one children (52% male; M age = 10.97 ± 2.51), aged 8-15, were screened for participation; 27 children (87%) evidenced WM difficulties and participated in CogmedRM training. On average, participants completed 19.7 out of 25 prescribed sessions, with an adherence rate of 69%. Participants demonstrated improvements in short-term memory, attention, and executive functioning (all Ps < .05). CONCLUSION: Results suggest that computerized, home-based WM training programs may be both feasible and efficacious for children with NF1 and cognitive deficits.


Subject(s)
Computer-Assisted Instruction/methods , Memory, Short-Term/physiology , Neurofibromatosis 1/physiopathology , Neurofibromatosis 1/therapy , Therapy, Computer-Assisted/methods , Adolescent , Child , Executive Function , Feasibility Studies , Female , Humans , Male , Neuropsychological Tests , Pilot Projects , Treatment Outcome
9.
J Atten Disord ; 25(8): 1177-1186, 2021 06.
Article in English | MEDLINE | ID: mdl-31838937

ABSTRACT

Objective: We examined the contribution of attention and executive cognitive processes to ADHD symptomatology in NF1, as well as the relationships between cognition and ADHD symptoms with functional outcomes. Methods: The study sample consisted of 141 children and adolescents with NF1. Children were administered neuropsychological tests that assessed attention and executive function, from which latent cognitive variables were derived. ADHD symptomatology, adaptive skills, and quality of life (QoL) were assessed using parent-rated questionnaires. Path analyses were conducted to test relationships among cognitive functioning, ADHD symptomatology, and functional outcomes. Results: Significant deficits were observed on all outcome variables. Cognitive variables did not predict ADHD symptomatology. Neither did they predict functional outcomes. However, elevated ADHD symptomatology significantly predicted functional outcomes. Conclusion: Irrespective of cognitive deficits, elevated ADHD symptoms in children with NF1 negatively impact daily functioning and emphasize the importance of interventions aimed at minimizing ADHD symptoms in NF1.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurofibromatosis 1 , Adolescent , Attention Deficit Disorder with Hyperactivity/epidemiology , Child , Cognition , Executive Function , Humans , Neurofibromatosis 1/complications , Neurofibromatosis 1/epidemiology , Neuropsychological Tests , Quality of Life
10.
Innov Clin Neurosci ; 18(10-12): 15-22, 2021.
Article in English | MEDLINE | ID: mdl-35096477

ABSTRACT

OBJECTIVE: The International Society of CNS Clinical Trials Methodology (ISCTM) Working Group on Rare Disease/Orphan Drug Development is dedicated to improving and streamlining trials to best develop new treatments for rare diseases. The rarity of these disorders requires a drug development strategy that differs from those of nonrare conditions. Rare disease drug development programs are challenged with small sample sizes, heterogeneous clinical presentations, and few, if any, off-the-shelf endpoints. When disease-specific clinical endpoints exist, they might not be validated and are typically not well known or broadly used in clinical practice. This paper aims to provide an overview of the special issues surrounding endpoints in rare disease drug development, with guidance, practical applications, and discussion. DISCUSSION: The paper covers regulatory considerations in endpoint selection; identification of relevant measurement domains; methods of quantifying clinical meaningfulness; incorporation of patient- and clinician-reported outcomes; considerations for global clinician- and patient-rated clinical assessments; cognition assessment challenges in rare diseases; translation considerations; training, standardization, and calibration of assessors; and endpoint quality assurance. Additionally, it provides guidance and resources for those involved in drug development for rare diseases. CONCLUSION: In keeping with the mission of ISCTM and the rare disease/orphan drug development working group, this article is designed to encourage thoughtful consideration and provide insight and guidance to promote and further efforts in in central nervous system (CNS) rare disease drug development efforts.

12.
Transl Psychiatry ; 10(1): 231, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661301

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder in children, with genetic factors accounting for 75-80% of the phenotypic variance. Recent studies have suggested that ADHD patients might present with atypical central myelination that can persist into adulthood. Given the essential role of sphingolipids in myelin formation and maintenance, we explored genetic variation in sphingolipid metabolism genes for association with ADHD risk. Whole-exome genotyping was performed in three independent cohorts from disparate regions of the world, for a total of 1520 genotyped subjects. Cohort 1 (MTA (Multimodal Treatment study of children with ADHD) sample, 371 subjects) was analyzed as the discovery cohort, while cohorts 2 (Paisa sample, 298 subjects) and 3 (US sample, 851 subjects) were used for replication. A set of 58 genes was manually curated based on their roles in sphingolipid metabolism. A targeted exploration for association between ADHD and 137 markers encoding for common and rare potentially functional allelic variants in this set of genes was performed in the screening cohort. Single- and multi-locus additive, dominant and recessive linear mixed-effect models were used. During discovery, we found statistically significant associations between ADHD and variants in eight genes (GALC, CERS6, SMPD1, SMPDL3B, CERS2, FADS3, ELOVL5, and CERK). Successful local replication for associations with variants in GALC, SMPD1, and CERS6 was demonstrated in both replication cohorts. Variants rs35785620, rs143078230, rs398607, and rs1805078, associated with ADHD in the discovery or replication cohorts, correspond to missense mutations with predicted deleterious effects. Expression quantitative trait loci analysis revealed an association between rs398607 and increased GALC expression in the cerebellum.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Child , Genetic Predisposition to Disease , Humans , Mutation , Polymorphism, Single Nucleotide , Sphingolipids , Sphingomyelin Phosphodiesterase
13.
Childs Nerv Syst ; 36(10): 2321-2332, 2020 10.
Article in English | MEDLINE | ID: mdl-32617712

ABSTRACT

PURPOSE: Neurofibromatosis type 1 (NF1) is a rare monogenic disorder associated with executive function (EF) deficits and heightened risk for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The goal of this paper is to understand how EFs provide a common foundation to understand vulnerabilities for ADHD and ASD within NF1. METHODS: A literature review and synthesis was conducted. RESULTS: EF difficulties in working memory, inhibitory control, cognitive flexibility, and planning are evident in NF1, ADHD, and ASD. However, relatively little is known about the heterogeneity of EFs and ADHD and ASD outcomes in NF1. Assessment of ADHD and ASD in NF1 is based on behavioral symptoms without understanding neurobiological contributions. Recent efforts are promoting the use of dimensional and multidisciplinary methods to better understand normal and abnormal behavior, including integrating information from genetics to self-report measures. CONCLUSION: NF1 is a monogenic disease with well-developed molecular and phenotypic research as well as complementary animal models. NF1 presents an excellent opportunity to advance our understanding of the neurobiological impact of known pathogenic variation in normal and abnormal neural pathways implicated in human psychopathology. EFs are core features of NF1, ADHD, and ASD, and these neurodevelopmental outcomes are highly prevalent in NF1. We propose a multilevel approach for understanding EFs in patients with NF1.This is essential to advance targeted interventions for NF1 patients and to advance the exciting field of research in this condition.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Neurofibromatosis 1 , Attention Deficit Disorder with Hyperactivity/etiology , Executive Function , Humans , Neurofibromatosis 1/complications
14.
Behav Genet ; 50(4): 191-202, 2020 07.
Article in English | MEDLINE | ID: mdl-32026187

ABSTRACT

The genetic architecture of neurodevelopmental disorders is largely polygenic, non-specific, and pleiotropic. This complex genetic architecture makes the search for specific etiological mechanisms that contribute to neurodevelopmental risk more challenging. Monogenic disorders provide an opportunity to focus in on how well-articulated signaling pathways contribute to risk for neurodevelopmental outcomes. This paper will focus on neurofibromatosis type 1 (NF1), a rare monogenic disorder that is associated with varied neurodevelopmental outcomes. Specifically, this paper will provide a brief overview of NF1 and its phenotypic associations with autism spectrum disorder, attention-deficit/hyperactivity disorder, and specific learning disorders, describe how variation within the NF1 gene increases risk for neurodevelopmental disorders via altered Ras signaling, and provide future directions for NF1 research to help elucidate the genetic architecture of neurodevelopmental disorders in the general population.


Subject(s)
Neurodevelopmental Disorders/genetics , Neurofibromatosis 1/genetics , ras Proteins/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Humans , Learning Disabilities/genetics , Neurofibromatosis 1/epidemiology , Neurofibromatosis 1/metabolism , ras Proteins/metabolism
15.
Ann Clin Transl Neurol ; 6(12): 2555-2565, 2019 12.
Article in English | MEDLINE | ID: mdl-31797581

ABSTRACT

OBJECTIVE: Rapid developments in understanding the molecular mechanisms underlying cognitive deficits in neurodevelopmental disorders have increased expectations for targeted, mechanism-based treatments. However, translation from preclinical models to human clinical trials has proven challenging. Poor reproducibility of cognitive endpoints may provide one explanation for this finding. We examined the suitability of cognitive outcomes for clinical trials in children with neurofibromatosis type 1 (NF1) by examining test-retest reliability of the measures and the application of data reduction techniques to improve reproducibility. METHODS: Data were analyzed from the STARS clinical trial (n = 146), a multi-center double-blind placebo-controlled phase II trial of lovastatin, conducted by the NF Clinical Trials Consortium. Intra-class correlation coefficients were generated between pre- and post-performances (16-week interval) on neuropsychological endpoints in the placebo group to determine test-retest reliabilities. Confirmatory factor analysis was used to reduce data into cognitive domains and account for measurement error. RESULTS: Test-retest reliabilities were highly variable, with most endpoints demonstrating unacceptably low reproducibility. Data reduction confirmed four distinct neuropsychological domains: executive functioning/attention, visuospatial ability, memory, and behavior. Test-retest reliabilities of latent factors improved to acceptable levels for clinical trials. Applicability and utility of our model was demonstrated by homogeneous effect sizes in the reanalyzed efficacy data. INTERPRETATION: These data demonstrate that single observed endpoints are not appropriate to determine efficacy, partly accounting for the poor test-retest reliability of cognitive outcomes in clinical trials in neurodevelopmental disorders. Recommendations to improve reproducibility are outlined to guide future trial design.


Subject(s)
Clinical Trials as Topic/standards , Cognitive Dysfunction/diagnosis , Neurofibromatosis 1 , Outcome Assessment, Health Care/standards , Reproducibility of Results , Adolescent , Biomarkers , Child , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Double-Blind Method , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Male , Neurofibromatosis 1/complications , Neurofibromatosis 1/drug therapy
16.
Birth Defects Res ; 111(19): 1584-1588, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31626395

ABSTRACT

PURPOSE: Turner syndrome (TS) is the most common sex chromosome disorder in women and is associated with a higher than expected death rate secondary to cerebrovascular disease, including stroke. This study evaluates the cerebral vascular anatomy of individuals with TS. METHODS: Twenty-one women with TS had brain magnetic resonance angiography (MRA). These MRAs were evaluated in a blinded manner with a control group of 25 men and 25 women who had MRA imaging for multiple indications including migraine headaches, psychiatric disorders, and seizures. RESULTS: Twenty-nine percent of women with TS were missing an A1 segment of the anterior cerebral artery (ACA) compared to 0% in the control group (p < .001). There were no other significant differences in the circle of Willis (COW) in women with TS compared with the control group. A complete COW was found in 3 of 21 (14%) of women with TS and 12 of 47 (26%) controls (p = .36). CONCLUSION: Women with TS have a significantly different intracranial vascular anatomy, specifically the absence of the A1 segment of the ACA when compared to male and female controls. More research in brain imaging in women with TS and stroke and other cerebrovascular diseases is needed to determine the clinical significance of this anomaly.


Subject(s)
Anterior Cerebral Artery/anatomy & histology , Circle of Willis/anatomy & histology , Turner Syndrome/physiopathology , Adult , Anterior Cerebral Artery/pathology , Brain/blood supply , Circle of Willis/pathology , Female , Humans , Magnetic Resonance Angiography/methods , Male
17.
Neurobiol Dis ; 130: 104479, 2019 10.
Article in English | MEDLINE | ID: mdl-31128207

ABSTRACT

Children with the autosomal dominant single gene disorder, neurofibromatosis type 1 (NF1), display multiple structural and functional changes in the central nervous system, resulting in neuropsychological cognitive abnormalities. Here we assessed the pathological functional organization that may underlie the behavioral impairments in NF1 using resting-state functional connectivity MRI. Coherent spontaneous fluctuations in the fMRI signal across the entire brain were used to interrogate the pattern of functional organization of corticocortical and corticostriatal networks in both NF1 pediatric patients and mice with a heterozygous mutation in the Nf1 gene (Nf1+/-). Children with NF1 demonstrated abnormal organization of cortical association networks and altered posterior-anterior functional connectivity in the default network. Examining the contribution of the striatum revealed that corticostriatal functional connectivity was altered. NF1 children demonstrated reduced functional connectivity between striatum and the frontoparietal network and increased striatal functional connectivity with the limbic network. Awake passive mouse functional connectivity MRI in Nf1+/- mice similarly revealed reduced posterior-anterior connectivity along the cingulate cortex as well as disrupted corticostriatal connectivity. The striatum of Nf1+/- mice showed increased functional connectivity to somatomotor and frontal cortices and decreased functional connectivity to the auditory cortex. Collectively, these results demonstrate similar alterations across species, suggesting that NF1 pathogenesis is linked to striatal dysfunction and disrupted corticocortical connectivity in the default network.


Subject(s)
Autistic Disorder/etiology , Brain/pathology , Neural Pathways/pathology , Neurofibromatosis 1/complications , Neurofibromatosis 1/pathology , Adolescent , Animals , Brain/diagnostic imaging , Child , Disease Models, Animal , Female , Humans , Magnetic Resonance Imaging , Male , Mice , Neural Pathways/diagnostic imaging , Neurofibromatosis 1/diagnostic imaging
18.
Transl Psychiatry ; 9(1): 42, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696812

ABSTRACT

Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.


Subject(s)
Genetic Predisposition to Disease , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Substance-Related Disorders/genetics , Adult , Case-Control Studies , Female , Humans , Longitudinal Studies , Male , Polymorphism, Single Nucleotide , Risk Factors , Substance-Related Disorders/epidemiology , Young Adult
19.
Cancer Prev Res (Phila) ; 11(10): 655-664, 2018 10.
Article in English | MEDLINE | ID: mdl-30104415

ABSTRACT

NF1 germline mutation predisposes to breast cancer. NF1 mutations have also been proposed as oncogenic drivers in sporadic breast cancers. To understand the genomic and histologic characteristics of these breast cancers, we analyzed the tumors with NF1 germline mutations and also examined the genomic and proteomic profiles of unselected tumors. Among 14 breast cancer specimens from 13 women affected with neurofibromatosis type 1 (NF1), 9 samples (NF + BrCa) underwent genomic copy number (CN) and targeted sequencing analysis. Mutations of NF1 were identified in two samples and TP53 were in three. No mutation was detected in ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, and STK11 HER2 (ErbB2) overexpression was detected by IHC in 69.2% (9/13) of the tumors. CN gain/amplification of ERBB2 was detected in 4 of 9 with DNA analysis. By evaluating HER2 expression and NF1 alterations in unselected invasive breast cancers in TCGA datasets, we discovered that among samples with ERBB2 CN gain/amplification, the HER2 mRNA and protein expression were much more pronounced in NF1-mutated/deleted samples in comparison with NF1-unaltered samples. This finding suggests a synergistic interplay between these two genes, potentially driving the development of breast cancer harboring NF1 mutation and ERBB2 CN gain/amplification. NF1 gene loss of heterozygosity was observed in 4 of 9 NF + BrCa samples. CDK4 appeared to have more CN gain in NF + BrCa and exhibited increased mRNA expression in TCGA NF1--altered samples. Cancer Prev Res; 11(10); 655-64. ©2018 AACR.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Receptor, ErbB-2/genetics , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 4/genetics , DNA Mutational Analysis , Datasets as Topic , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Germ-Line Mutation , Humans , Loss of Heterozygosity , Neurofibromatosis 1/complications , Receptor, ErbB-2/metabolism
20.
Genes Chromosomes Cancer ; 57(1): 19-27, 2018 01.
Article in English | MEDLINE | ID: mdl-28891274

ABSTRACT

NF1 mutations predispose to neurofibromatosis type 1 (NF1) and women with NF1 have a moderately elevated risk for breast cancer, especially under age 50. Germline genomic analysis may better define the risk so screening and prevention can be applied to the individuals who benefit the most. Survey conducted in several neurofibromatosis clinics in the United States has demonstrated a 17.2% lifetime risk of breast cancer in women affected with NF1. Cumulated risk to age 50 is estimated to be 9.27%. For genomic profiling, fourteen women with NF1 and a history of breast cancer were recruited and underwent whole exome sequencing (WES), targeted genomic DNA based and RNA-based analysis of the NF1 gene. Deleterious NF1 pathogenic variants were identified in each woman. Frameshift mutations because of deletion/duplication/complex rearrangement were found in 50% (7/14) of the cases, nonsense mutations in 21% (3/14), in-frame splice mutations in 21% (3/14), and one case of missense mutation (7%, 1/14). No deleterious mutation was found in the following high/moderate-penetrance breast cancer genes: ATM, BRCA1, BRCA2, BARD1, BRIP1, CDH1, CHEK2, FANCC, MRE11A, NBN, PALB2, PTEN, RAD50, RAD51C, TP53, and STK11. Twenty-five rare or common variants in cancer related genes were discovered and may have contributed to the breast cancers in these individuals. Breast cancer predisposition modifiers in women with NF1 may involve a great variety of molecular and cellular functions.


Subject(s)
Breast Neoplasms/genetics , Exome Sequencing , Germ-Line Mutation , Neurofibromatosis 1/genetics , Adult , Breast Neoplasms/epidemiology , Female , Genes, Neurofibromatosis 1 , Humans , Middle Aged , Neurofibromatosis 1/complications , Oncogenes , Penetrance , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...