Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38544082

ABSTRACT

The goal of the sensor industry is to develop innovative, energy-efficient, and reliable devices to detect molecules relevant to economically important sectors such as clinical diagnoses, environmental monitoring, food safety, and wearables. The current demand for portable, fast, sensitive, and high-throughput platforms to detect a plethora of new analytes is continuously increasing. The 2D transition metal dichalcogenides (2D-TMDs) are excellent candidates to fully meet the stringent demands in the sensor industry; 2D-TMDs properties, such as atomic thickness, large surface area, and tailored electrical conductivity, match those descriptions of active sensor materials. However, the detection capability of 2D-TMDs is limited by their intrinsic tendency to aggregate and settle, which reduces the surface area available for detection, in addition to the weak interactions that pristine 2D-TMDs normally exhibit with analytes. Chemical functionalization has been proposed as a consensus solution to these limitations. Tailored surface modification of 2D-TMDs, either by covalent functionalization, non-covalent functionalization, or a mixture of both, allows for improved specificity of the surface-analyte interaction while reducing van der Waals forces between 2D-TMDs avoiding agglomeration and precipitation. From this perspective, we review the recent advances in improving the detection of biomolecules, heavy metals, and gases using chemically functionalized 2D-TMDs. Covalent and non-covalent functionalized 2D-TMDs are commonly used for the detection of biomolecules and metals, while 2D-TMDs functionalized with metal nanoparticles are used for gas and Raman sensors. Finally, we describe the limitations and further strategies that might pave the way for miniaturized, flexible, smart, and low-cost sensing devices.

2.
Phys Chem Chem Phys ; 25(36): 24264-24277, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671413

ABSTRACT

Hierarchically assembled 2D material membranes are extremely promising platforms for energy conversion processes in nanofluidics. In this perspective, we discuss recent advances in the production of smart 2D material membranes that come close to mimicking biological energy conversion processes and how these efforts translate into the design of water purification systems, artificial photosynthesis, and solar energy conversion devices. As we depict here, 2D material membranes synergistically modulate the intrinsic active sites (nanopores), electron transport, mass transfer, and mechanical and chemical stability aiming at cost-effective and highly efficient smart membranes.

3.
ACS Appl Mater Interfaces ; 13(34): 40909-40921, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410097

ABSTRACT

The outstanding versatility of graphene for surface functionalization has been exploited by its decoration with synthesized polypyrrole (PPy) nanoparticles (NPs). A green, facile, and easily scalable for mass production nanocomposite development was proposed, and the resulting PPy@Graphene was implemented in chemoresistive gas sensors able to detect trace levels of ammonia (NH3) under room-temperature conditions. Gas exposure for 5 min revealed that the presence of nanoparticles decorating graphene entail greater sensitivity (13-fold) in comparison to the bare graphene performance. Noteworthy, excellent repeatability (0.7% of relative error) and a low limit of detection of 491 ppb were obtained, together with excellent long-term stability. Besides, an extensive material characterization was conducted, and vibration bands obtained via Raman spectroscopy confirmed the formation of PPy NPs, while X-ray spectroscopy (XPS) revealed the relative abundance of the different species, as polarons and bipolarons. Additionally, XPS analyses were conducted before and after NH3 exposure to assess the PPy aging and the changes induced in their physicochemical and electronic properties. Specifically, the gas sensor was tested during a 5-month period, demonstrating significant stability over time, since just a slight decrease (11%) in the responses was registered. In summary, the present work reports for the first time the use of PPy NPs decorating graphene for gas-sensing purposes, revealing promising properties for the development of unattended gas-sensing networks for monitoring air quality.

4.
Sensors (Basel) ; 21(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34450748

ABSTRACT

TiO2 nanoparticles doped with different amounts of Nd3+ (0.5, 1, and 3 wt.%) were synthetized by the sol-gel method, and evaluated as potential temperature nanoprobes using the fluorescence intensity ratio between thermal-sensitive radiative transitions of the Nd3+. XRD characterization identified the anatase phase in all the doped samples. The morphology of the nanoparticles was observed with SEM, TEM and HRTEM microscopies. The relative amount of Nd3+ in TiO2 was obtained by EDXS, and the oxidation state of titanium and neodymium was investigated via XPS and NEXAFS, respectively. Nd3+ was present in all the samples, unlike titanium, where besides Ti4+, a significantly amount of Ti3+ was observed; the relative concentration of Ti3+ increased as the amount of Nd3+ in the TiO2 nanoparticles increased. The photoluminescence of the synthetized nanoparticles was investigated, with excitation wavelengths of 350, 514 and 600 nm. The emission intensity of the broad band that was associated with the presence of defects in the TiO2, increased when the concentration of Nd3+ was increased. Using 600 nm for excitation, the 4F7/2→4I9/2, 4F5/2→4I9/2 and 4F3/2→4I9/2 transitions of Nd3+ ions, centered at 760 nm, 821 nm, and 880 nm, respectively, were observed. Finally, the effect of temperature in the photoluminescence intensity of the synthetized nanoparticles was investigated, with an excitation wavelength of 600 nm. The spectra were collected in the 288-348 K range. For increasing temperatures, the emission intensity of the 4F7/2→4I9/2 and 4F5/2→4I9/2 transitions increased significantly, in contrast to the 4F3/2→4I9/2 transition, in which the intensity emission decreased. The fluorescence intensity ratio between the transitions I821I880=F5/24I49/2F43/2I49/2 and I760I880=F47/2I49/2F43/2I49/2 were used to calculate the relative sensitivity of the sensors. The relative sensitivity was near 3% K-1 for I760I880 and near 1% K-1 for I821I880.


Subject(s)
Nanoparticles , Titanium , Microscopy, Electron, Transmission , Temperature
5.
Sensors (Basel) ; 21(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072115

ABSTRACT

This paper presents a methodology to quantify oxidizing and reducing gases using n-type and p-type chemiresistive sensors, respectively. Low temperature sensor heating with pulsed UV or visible light modulation is used together with the application of the fast Fourier transform (FFT) to extract sensor response features. These features are further processed via principal component analysis (PCA) and principal component regression (PCR) for achieving gas discrimination and building concentration prediction models with R2 values up to 98% and RMSE values as low as 5% for the total gas concentration range studied. UV and visible light were used to study the influence of the light wavelength in the prediction model performance. We demonstrate that n-type and p-type sensors need to be used together for achieving good quantification of oxidizing and reducing species, respectively, since the semiconductor type defines the prediction model's effectiveness towards an oxidizing or reducing gas. The presented method reduces considerably the total time needed to quantify the gas concentration compared with the results obtained in a previous work. The use of visible light LEDs for performing pulsed light modulation enhances system performance and considerably reduces cost in comparison to previously reported UV light-based approaches.

6.
RSC Adv ; 11(58): 36483-36493, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35494379

ABSTRACT

Laminated metal dichalcogenides are candidates for different potential applications ranging from catalysis to nanoelectronics. However, efforts are still needed to optimize synthesis methods aiming to control the number of layers, morphology, and crystallinity, parameters that govern the properties of the synthesized materials. Another important parameter is the thickness and the length of the samples with the possibility of large-scale growth of target homogeneous materials. Here, we report a chemical vapor deposition method at atmospheric pressure to produce vertically aligned tin dichalcogenide based-materials. Tin disulfide (SnS2) and tin diselenide (SnSe2) vertically aligned nanosheets have been synthesized and characterized by different methods showing their crystallinity and purity. Homogenous crystalline 2H-phase SnS2 nanosheets with high purity were synthesized with vertical orientation on substrates; sulfur vacancies were observed at the edges of the sheets. Similarly, in the crystalline 2H phase SnSe2 nanosheets selenium vacancies were observed at the edges. Moreover, these nanosheets are larger than the SnS2 nanosheets, show lower nanosheet homogeneity on substrates and contamination with selenium atoms from the synthesis was observed. The synthesized nanomaterials are interesting in various applications where the edge accessibility and/or directionality of the nanosheets play a major role as for example in gas sensing or field emission.

7.
Front Chem ; 8: 571790, 2020.
Article in English | MEDLINE | ID: mdl-33330360

ABSTRACT

Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.

8.
Beilstein J Nanotechnol ; 11: 1054-1061, 2020.
Article in English | MEDLINE | ID: mdl-32733780

ABSTRACT

The global emergence of multidrug resistance of fungal infections and the decline in the discovery of new antibiotics are increasingly prevalent causes of hospital-acquired infections, among other major challenges in the global health care sector. There is an urgent need to develop noninvasive, nontoxic, and new antinosocomial approaches that work more effectively and faster than current antibiotics. In this work, we report on a biocompatible hybrid nanomaterial composed of few-layer graphene and chlorin e6 (FLG-Ce6) for the photodynamic treatment (PDT) of Candida albicans. We show that the FLG-Ce6 hybrid nanomaterial displays enhanced reactive oxygen species (ROS) generation compared with Ce6. The enhancement is up to 5-fold when irradiated for 15 min at 632 nm with a red light-emitting diode (LED). The viability of C. albicans in the presence of FLG-Ce6 was measured 48 h after photoactivation. An antifungal effect was observed only when the culture/FLG-Ce6 hybrid was exposed to the light source. C. albicans is rendered completely unviable after exposure to ROS generated by the excited FLG-Ce6 hybrid nanomaterial. An increased PDT effect was observed with the FLG-Ce6 hybrid nanomaterial by a significant reduction in the viability of C. albicans, by up to 95%. This is a marked improvement compared to Ce6 without FLG, which reduces the viability of C. albicans to only 10%. The antifungal action of the hybrid nanomaterial can be activated by a synergistic mechanism of energy transfer of the absorbed light from Ce6 to FLG. The novel FLG-Ce6 hybrid nanomaterial in combination with the red LED light irradiation can be used in the development of a wide range of antinosocomial devices and coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...