Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Arthritis Rheumatol ; 76(1): 141-145, 2024 01.
Article in English | MEDLINE | ID: mdl-37561109

ABSTRACT

OBJECTIVE: Erdheim-Chester disease (ECD) is rare histiocytosis with a wide range of clinical manifestations. Somatic mutations are key to the pathogenesis of the disease; however, the relationship between germline genetic variants and ECD has not been examined so far. The present study aims to explore the inherited genetic component of ECD by performing the first genome-wide association study. METHODS: After quality controls, a cohort of 255 patients with ECD and 7,471 healthy donors was included in this study. Afterward, a logistic regression followed by in silico functional annotation was performed. RESULTS: A signal at the 18q12.3 genomic region was identified as a new susceptibility locus for ECD (P = 2.75 × 10-11 ; Odds Ratio = 2.09). This association was annotated to the SETBP1 gene, which is involved in clonal haematopoiesis. Functional annotation of this region and of the identified suggestive signals revealed additional genes that could be potentially involved in the pathogenesis of the disease. CONCLUSION: Overall, this work demonstrates that germline genetic variants can impact on the development of ECD and suggests new pathways with a potential pathogenic role.


Subject(s)
Erdheim-Chester Disease , Humans , Erdheim-Chester Disease/genetics , Erdheim-Chester Disease/pathology , Genome-Wide Association Study , Genomics , Germ Cells/pathology
2.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958573

ABSTRACT

Although previous studies have suggested a relationship between telomere shortening and systemic sclerosis (SSc), the association between these two traits remains poorly understood. The objective of this study was to assess the causal relationship between telomere length in leukocytes (LTL) and SSc using the two-sample Mendelian randomization approach, with the genome-wide association study data for both LTL and SSc. The results of inverse-variance weighted regression (OR = 0.716 [95% CI 0.528-0.970], p = 0.031) and the Mendelian randomization pleiotropy residual sum and outlier method (OR = 0.716 [95% CI 0.563-0.911], p = 0.035) indicate an association between telomere length and SSc. Specifically, longer genetically predicted LTL is associated with a reduced risk of SSc. Sensitivity tests highlight the significant roles of the variants rs10936599 and rs2736100 annotated to the TERC and TERT genes, respectively. Our findings suggest an influence of telomere length in leukocytes on the development of SSc.


Subject(s)
Genome-Wide Association Study , Scleroderma, Systemic , Humans , Mendelian Randomization Analysis , Leukocytes , Scleroderma, Systemic/genetics , Telomere/genetics , Polymorphism, Single Nucleotide
3.
J Autoimmun ; 140: 103097, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37633117

ABSTRACT

Systemic sclerosis (SSc) is a complex disease that affects the connective tissue, causing fibrosis. SSc patients show altered immune cell composition and activation in the peripheral blood (PB). PB monocytes (Mos) are recruited into tissues where they differentiate into macrophages, which are directly involved in fibrosis. To understand the role of CD14+ PB Mos in SSc, a single-cell transcriptome analysis (scRNA-seq) was conducted on 8 SSc patients and 8 controls. Using unsupervised clustering methods, CD14+ cells were assigned to 11 clusters, which added granularity to the known monocyte subsets: classical (cMos), intermediate (iMos) and non-classical Mos (ncMos) or type 2 dendritic cells. NcMos were significantly overrepresented in SSc patients and showed an active IFN-signature and increased expression levels of PTGES, in addition to monocyte motility and adhesion markers. We identified a SSc-related cluster of IRF7+ STAT1+ iMos with an aberrant IFN-response. Finally, a depletion of M2 polarised cMos in SSc was observed. Our results highlighted the potential of PB Mos as biomarkers for SSc and provided new possibilities for putative drug targets for modulating the innate immune response in SSc.

4.
Rheumatology (Oxford) ; 62(SI): SI138-SI142, 2023 02 06.
Article in English | MEDLINE | ID: mdl-35876828

ABSTRACT

OBJECTIVES: rs76428106-C, a low frequency polymorphism that affects the splicing of the FLT3 gene, has recently been associated with several seropositive autoimmune diseases. Here, we aimed to evaluate the potential implication of rs76428106-C in the susceptibility to systemic sclerosis (SSc). METHODS: We analysed a total of 26 598 European ancestry individuals, 9063 SSc and 17 535 healthy controls, to test the association between FLT3 rs76428106-C and SSc and its different subphenotypes. Genotype data of rs76428106 were obtained by imputation of already available genome-wide association study data and analysed by logistic regression analysis. RESULTS: In accordance with that observed in other autoimmune disorders, the FLT3 rs76428106-C allele was significantly increased [P-value = 2.03 × 10-3, odds ratio (OR) = 1.34] in SSc patients compared with healthy controls. A similar risk effect was found when the main SSc clinical and serological subgroups were compared with controls. When comparing SSc patients with and without digital ulcers (DU), the rs76428106-C frequency was significantly increased in DU-positive SSc patients in comparison with DU-negative patients (P-value = 0.036, OR = 2.16). CONCLUSION: This study is the first to report an association between rs76428176-C and SSc. Our results support the role of FLT3 as a relevant gene in seropositive immune-mediated diseases and a potential biomarker for SSc microangiopathy.


Subject(s)
Autoimmune Diseases , Scleroderma, Systemic , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Scleroderma, Systemic/genetics , Genotype , Autoimmune Diseases/genetics , Case-Control Studies , fms-Like Tyrosine Kinase 3/genetics
5.
NPJ Genom Med ; 7(1): 57, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36198672

ABSTRACT

Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.

6.
J Clin Med ; 11(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36294335

ABSTRACT

Obesity contributes to a chronic proinflammatory state, which is a known risk factor to develop immune-mediated diseases. However, its role in systemic sclerosis (SSc) remains to be elucidated. Therefore, we conducted a two-sample mendelian randomization (2SMR) study to analyze the effect of three body fat distribution parameters in SSc. As instrumental variables, we used the allele effects described for single nucleotide polymorphisms (SNPs) in different genome-wide association studies (GWAS) for SSc, body mass index (BMI), waist-to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI). We performed local (pHESS) and genome-wide (LDSC) genetic correlation analyses between each of the traits and SSc and we applied several Mendelian randomization (MR) methods (i.e., random effects inverse-variance weight, MR-Egger regression, MR pleiotropy residual sum and outlier method and a multivariable model). Our results show no genetic correlation or causal relationship between any of these traits and SSc. Nevertheless, we observed a negative causal association between WHRadjBMI and SSc, which might be due to the effect of gastrointestinal complications suffered by the majority of SSc patients. In conclusion, reverse causality might be an especially difficult confounding factor to define the effect of obesity in the onset of SSc.

7.
PLoS Negl Trop Dis ; 15(10): e0009874, 2021 10.
Article in English | MEDLINE | ID: mdl-34714828

ABSTRACT

A recent genome-wide association study (GWAS) identified a locus in chromosome 11 associated with the chronic cardiac form of Chagas disease. Here we aimed to elucidate the potential functional mechanism underlying this genetic association by analyzing the correlation among single nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) levels as cis methylation quantitative trait loci (cis-mQTL) within this region. A total of 2,611 SNPs were tested against 2,647 DNAm sites, in a subset of 37 chronic Chagas cardiomyopathy patients and 20 asymptomatic individuals from the GWAS. We identified 6,958 significant cis-mQTLs (False Discovery Rate [FDR]<0.05) at 1 Mb each side of the GWAS leading variant, where six of them potentially modulate the expression of the SAC3D1 gene, the reported gene in the previous GWAS. In addition, a total of 268 cis-mQTLs showed differential methylation between chronic Chagas cardiomyopathy patients and asymptomatic individuals. The most significant cis-mQTLs mapped in the gene bodies of POLA2 (FDR = 1.04x10-11), PLAAT3 (FDR = 7.22x10-03), and CCDC88B (FDR = 1.89x10-02) that have been associated with cardiovascular and hematological traits in previous studies. One of the most relevant interactions correlated with hypermethylation of CCDC88B. This gene is involved in the inflammatory response, and its methylation and expression levels have been previously reported in Chagas cardiomyopathy. Our findings support the functional relevance of the previously associated genomic region, highlighting the regulation of novel genes that could play a role in the chronic cardiac form of the disease.


Subject(s)
Chagas Cardiomyopathy/genetics , Adult , Aged , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chagas Cardiomyopathy/metabolism , DNA Methylation , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
Hum Mol Genet ; 30(24): 2503-2512, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34302177

ABSTRACT

Chagas disease is an infection caused by the parasite Trypanosoma cruzi, endemic in Latino America. Leveraging the three-way admixture between Native American (AMR), European (EUR) and African (AFR) populations in Latin Americans, we aimed to better understand the genetic basis of Chagas disease by performing an admixture mapping study in a Colombian population. A two-stage study was conducted, and subjects were classified as seropositive and seronegative for T. cruzi. In stage 1, global and local ancestries were estimated using reference data from the 1000 Genomes Project (1KGP), and local ancestry associations were performed by logistic regression models. The AMR ancestry showed a protective association with Chagas disease within the major histocompatibility complex region [Odds ratio (OR) = 0.74, 95% confidence interval (CI) = 0.66-0.83, lowest P-value = 4.53 × 10-8]. The fine mapping assessment on imputed genotypes combining data from stage 1 and 2 from an independent Colombian cohort, revealed nominally associated variants in high linkage disequilibrium with the top signal (rs2032134, OR = 0.93, 95% CI = 0.90-0.97, P-value = 3.54 × 10-4) in the previously associated locus. To assess ancestry-specific adaptive signals, a selective sweep scan in an AMR reference population from 1KGP together with an in silico functional analysis highlighted the Tripartite Motif family and the human leukocyte antigen genes, with crucial role in the immune response against pathogens. Furthermore, these analyses emphasized the macrophages, neutrophils and eosinophils, as key players in the defense against T. cruzi. This first admixture mapping study in Chagas disease provided novel insights underlying the host immune response in the pathogenesis of this neglected disease.


Subject(s)
Chagas Disease , Polymorphism, Single Nucleotide , Chagas Disease/genetics , Colombia , Disease Susceptibility , Hispanic or Latino , Humans , Polymorphism, Single Nucleotide/genetics
9.
Ann Rheum Dis ; 80(8): 1040-1047, 2021 08.
Article in English | MEDLINE | ID: mdl-34096881

ABSTRACT

OBJECTIVE: The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. METHODS: 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). RESULTS: Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation. CONCLUSIONS: This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.


Subject(s)
Genome-Wide Association Study , Scleroderma, Systemic , Alleles , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Humans , Major Histocompatibility Complex , Scleroderma, Systemic/genetics
10.
Clin Infect Dis ; 73(4): 672-679, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33539531

ABSTRACT

BACKGROUND: Chagas disease is an infectious disease caused by the parasite Trypanosoma cruzi and is endemic from Latin American countries. The goal of our study was to identify novel genetic loci associated with chronic Chagas cardiomyopathy development in Chagas disease patients from different Latin American populations. METHODS: We performed a cross-sectional, nested case-control study including 3 sample collections from Colombia, Argentina, and Bolivia. Samples were genotyped to conduct a genome-wide association study (GWAS). These results were meta-analyzed with summary statistic data from Brazil, gathering a total of 3413 Chagas disease patients. To identify the functional impact of the associated variant and its proxies, we performed an in silico analysis of this region. RESULTS: The meta-analysis revealed a novel genome-wide statistically significant association with chronic Chagas cardiomyopathy development in rs2458298 (OR = 0.90, 95%CI = 0.87-0.94, P-value = 3.27 × 10-08), nearby the SAC3D1 gene. In addition, further in silico analyses displayed functional relationships between the associated variant and the SNX15, BAFT2, and FERMT3 genes, related to cardiovascular traits. CONCLUSIONS: Our findings support the role of the host genetic factors in the susceptibility to the development of the chronic cardiac form of this neglected disease.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Case-Control Studies , Chagas Cardiomyopathy/genetics , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Trypanosoma cruzi/genetics
11.
Arthritis Rheumatol ; 73(6): 1073-1085, 2021 06.
Article in English | MEDLINE | ID: mdl-33497037

ABSTRACT

OBJECTIVE: Clinical heterogeneity, a hallmark of systemic autoimmune diseases, impedes early diagnosis and effective treatment, issues that may be addressed if patients could be classified into groups defined by molecular pattern. This study was undertaken to identify molecular clusters for reclassifying systemic autoimmune diseases independently of clinical diagnosis. METHODS: Unsupervised clustering of integrated whole blood transcriptome and methylome cross-sectional data on 955 patients with 7 systemic autoimmune diseases and 267 healthy controls was undertaken. In addition, an inception cohort was prospectively followed up for 6 or 14 months to validate the results and analyze whether or not cluster assignment changed over time. RESULTS: Four clusters were identified and validated. Three were pathologic, representing "inflammatory," "lymphoid," and "interferon" patterns. Each included all diagnoses and was defined by genetic, clinical, serologic, and cellular features. A fourth cluster with no specific molecular pattern was associated with low disease activity and included healthy controls. A longitudinal and independent inception cohort showed a relapse-remission pattern, where patients remained in their pathologic cluster, moving only to the healthy one, thus showing that the molecular clusters remained stable over time and that single pathogenic molecular signatures characterized each individual patient. CONCLUSION: Patients with systemic autoimmune diseases can be jointly stratified into 3 stable disease clusters with specific molecular patterns differentiating different molecular disease mechanisms. These results have important implications for future clinical trials and the study of nonresponse to therapy, marking a paradigm shift in our view of systemic autoimmune diseases.


Subject(s)
Autoimmune Diseases/classification , Autoimmune Diseases/genetics , Epigenome , Gene Expression Profiling , Adult , Aged , Antiphospholipid Syndrome/genetics , Antiphospholipid Syndrome/immunology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Autoimmune Diseases/immunology , Case-Control Studies , Cluster Analysis , Cross-Sectional Studies , Epigenomics , Female , Humans , Inflammation/immunology , Interferons/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Mixed Connective Tissue Disease/genetics , Mixed Connective Tissue Disease/immunology , Scleroderma, Systemic/genetics , Scleroderma, Systemic/immunology , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Undifferentiated Connective Tissue Diseases/genetics , Undifferentiated Connective Tissue Diseases/immunology
12.
Arthritis Rheumatol ; 73(7): 1288-1300, 2021 07.
Article in English | MEDLINE | ID: mdl-33455083

ABSTRACT

OBJECTIVE: To identify the genetic variants that affect gene expression (expression quantitative trait loci [eQTLs]) in systemic sclerosis (SSc) and to investigate their role in the pathogenesis of the disease. METHODS: We performed an eQTL analysis using whole-blood sequencing data from 333 SSc patients and 524 controls and integrated them with SSc genome-wide association study (GWAS) data. We integrated our findings from expression modeling, differential expression analysis, and transcription factor binding site enrichment with key clinical features of SSc. RESULTS: We detected 49,123 validated cis-eQTLs from 4,539 SSc-associated single-nucleotide polymorphisms (SNPs) (PGWAS < 10-5 ). A total of 1,436 genes were within 1 Mb of the 4,539 SSc-associated SNPs. Of those 1,436 genes, 565 were detected as having ≥1 eQTL with an SSc-associated SNP. We developed a strategy to prioritize disease-associated genes based on their expression variance explained by SSc eQTLs (r2 > 0.05). As a result, 233 candidates were identified, 134 (58%) of them associated with hallmarks of SSc and 105 (45%) of them differentially expressed in the blood cells, skin, or lung tissue of SSc patients. Transcription factor binding site analysis revealed enriched motifs of 24 transcription factors (5%) among SSc eQTLs, 5 of which were found to be differentially regulated in the blood cells (ELF1 and MGA), skin (KLF4 and ID4), and lungs (TBX4) of SSc patients. Ten candidate genes (4%) can be targeted by approved medications for immune-mediated diseases, of which only 3 have been tested in clinical trials in patients with SSc. CONCLUSION: The findings of the present study indicate a new layer to the molecular complexity of SSc, contributing to a better understanding of the pathogenesis of the disease.


Subject(s)
Gene Expression Regulation/genetics , Scleroderma, Systemic/genetics , Adult , Aged , Basic Helix-Loop-Helix Transcription Factors/genetics , Female , Genetic Association Studies , Humans , Inhibitor of Differentiation Proteins/genetics , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Male , Middle Aged , Molecular Targeted Therapy , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , T-Box Domain Proteins/genetics , Transcription Factors/genetics
13.
Arthritis Rheumatol ; 73(6): 963-969, 2021 06.
Article in English | MEDLINE | ID: mdl-33381897

ABSTRACT

OBJECTIVE: Previously, only the HLA-DRB1 alleles have been assessed in rheumatoid arthritis (RA). The aim of the present study was to identify the key major histocompatibility complex (MHC) susceptibility factors showing a significant association with anti-carbamylated protein antibody-positive (anti-CarP+) RA. METHODS: Analyses were restricted to RA patients who were anti-cyclic citrullinated peptide antibody negative (anti-CCP-), because the anti-CCP status dominated the results otherwise. Therefore, we studied samples from 1,821 anti-CCP- RA patients and 6,821 population controls from Spain, Sweden, and the Netherlands. The genotypes for ~8,000 MHC biallelic variants were assessed by dense genotyping and imputation. Their association with the anti-CarP status in RA patients was tested with logistic regression and combined with inverse-variance meta-analysis. Significance of the associations was assessed according to a study-specific threshold of P < 2.0 × 10-5 . RESULTS: The HLA-B*08 allele and its correlated amino acid variant Asp-9 showed a significant association with anti-CarP+/anti-CCP- RA (P < 3.78 × 10-7 ; I2 = 0). This association was specific when assessed relative to 3 comparator groups: population controls, anti-CarP-/anti-CCP- RA patients, and anti-CCP- RA patients who were positive for other anti-citrullinated protein antibodies. Based on these findings, anti-CarP+/anti-CCP- RA patients could be separated from other antibody-defined subsets of RA patients in whom an association with the HLA-B*08 allele has been previously demonstrated. No other MHC variant remained associated with anti-CarP+/anti-CCP- RA after accounting for the presence of the HLA-B*08 allele. Specifically, the reported association of HLA-DRB1*03 was observed at a level comparable to that reported previously, but it was attributable to linkage disequilibrium. CONCLUSION: These results identify HLA-B*08 carrying Asp-9 as the MHC locus showing the strongest association with anti-CarP+/anti-CCP- RA. This knowledge may help clarify the role of the HLA in susceptibility to specific subsets of RA, by shaping the spectrum of RA autoantibodies.


Subject(s)
Arthritis, Rheumatoid/genetics , Autoantibodies/immunology , HLA-B8 Antigen/genetics , Protein Carbamylation/immunology , Alleles , Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Rheumatoid/immunology , Aspartic Acid/genetics , Genetic Predisposition to Disease , HLA-B8 Antigen/immunology , Humans
15.
Ann Rheum Dis ; 80(1): 118-127, 2021 01.
Article in English | MEDLINE | ID: mdl-33004331

ABSTRACT

OBJECTIVES: Genomic Risk Scores (GRS) successfully demonstrated the ability of genetics to identify those individuals at high risk for complex traits including immune-mediated inflammatory diseases (IMIDs). We aimed to test the performance of GRS in the prediction of risk for systemic sclerosis (SSc) for the first time. METHODS: Allelic effects were obtained from the largest SSc Genome-Wide Association Study (GWAS) to date (9 095 SSc and 17 584 healthy controls with European ancestry). The best-fitting GRS was identified under the additive model in an independent cohort that comprised 400 patients with SSc and 571 controls. Additionally, GRS for clinical subtypes (limited cutaneous SSc and diffuse cutaneous SSc) and serological subtypes (anti-topoisomerase positive (ATA+) and anti-centromere positive (ACA+)) were generated. We combined the estimated GRS with demographic and immunological parameters in a multivariate generalised linear model. RESULTS: The best-fitting SSc GRS included 33 single nucleotide polymorphisms (SNPs) and discriminated between patients with SSc and controls (area under the receiver operating characteristic (ROC) curve (AUC)=0.673). Moreover, the GRS differentiated between SSc and other IMIDs, such as rheumatoid arthritis and Sjögren's syndrome. Finally, the combination of GRS with age and immune cell counts significantly increased the performance of the model (AUC=0.787). While the SSc GRS was not able to discriminate between ATA+ and ACA+ patients (AUC<0.5), the serological subtype GRS, which was based on the allelic effects observed for the comparison between ACA+ and ATA+ patients, reached an AUC=0.693. CONCLUSIONS: GRS was successfully implemented in SSc. The model discriminated between patients with SSc and controls or other IMIDs, confirming the potential of GRS to support early and differential diagnosis for SSc.


Subject(s)
Scleroderma, Diffuse/genetics , Scleroderma, Limited/genetics , Adult , Aged , Antibodies, Antinuclear/immunology , Arthritis, Rheumatoid/genetics , Autoantibodies/immunology , Case-Control Studies , DNA Topoisomerases/immunology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linear Models , Lupus Erythematosus, Systemic/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Scleroderma, Diffuse/immunology , Scleroderma, Limited/immunology , Scleroderma, Systemic/genetics , Scleroderma, Systemic/immunology , Sjogren's Syndrome/genetics , White People
16.
Genes (Basel) ; 11(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33317201

ABSTRACT

Immune-mediated diseases (IMDs) are complex pathologies that are strongly influenced by environmental and genetic factors. Associations between genetic loci and susceptibility to these diseases have been widely studied, and hundreds of risk variants have emerged during the last two decades, with researchers observing a shared genetic pattern among them. Nevertheless, the pathological mechanism behind these associations remains a challenge that has just started to be understood thanks to functional genomic approaches. Transcriptomics, regulatory elements, chromatin interactome, as well as the experimental characterization of genomic findings, constitute key elements in the emerging understandings of how genetics affects the etiopathogenesis of IMDs. In this review, we will focus on the latest advances in the field of functional genomics, centering our attention on systemic rheumatic IMDs.


Subject(s)
Genomics/methods , Immune System Diseases/genetics , Immune System Diseases/physiopathology , Epigenomics/methods , Gene Expression Profiling/methods , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Regulatory Sequences, Nucleic Acid/genetics , Transcriptome/genetics
17.
Acta Trop ; 210: 105546, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32492396

ABSTRACT

The aim of the present study was to analyze IL6 rs1800795 genetic variant in the susceptibility to Trypanosoma cruzi infection and in the development of chronic Chagas cardiomyopathy (CCC), in five independent Latin American cohorts. A total of 3,087 individuals from Latin American countries (Argentina, Bolivia, Peru, and two cohorts from Colombia) were studied. In all cohorts, patients were classified as seropositive for T. cruzi antigens (n= 1,963) and seronegative (n= 1,124). Based on clinical evaluation, the seropositive patients, were classified as CCC (n= 900) and asymptomatic (n= 1,063). No statistically significant differences in the frequency of IL6 rs1800795 between seropositive and seronegative, or between CCC and asymptomatic patients, were found. Furthermore, after the meta-analysis no statistically significant differences were observed. Our results do not support a contribution of IL6 rs1800795 genetic variant in the susceptibility to the infection and the development of chronic Chagas cardiomyopathy in the studied populations.


Subject(s)
Chagas Cardiomyopathy/genetics , Genetic Predisposition to Disease , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Chagas Cardiomyopathy/etiology , Chronic Disease , Female , Humans , Latin America , Male , Middle Aged
19.
Sci Rep ; 10(1): 5015, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193469

ABSTRACT

Genetic factors and the immunologic response have been suggested to determine the susceptibility against the infection and the outcome of Chagas disease. In the present study, we analysed three IL17A genetic variants (rs4711998, rs8193036 and rs2275913) regarding the predisposition to Trypanosoma cruzi infection and the development of chronic Chagas cardiomyopathy (CCC) in different Latin American populations. A total of 2,967 individuals from Colombia, Argentina, Bolivia and Brazil, were included in this study. The individuals were classified as seronegative and seropositive for T. cruzi antigens, and this last group were divided into asymptomatic and CCC. For T. cruzi infection susceptibility, the IL17A rs2275913*A showed a significant association in a fixed-effect meta-analysis after a Bonferroni correction (P = 0.016, OR = 1.21, 95%CI = 1.06-1.41). No evidence of association was detected when comparing CCC vs. asymptomatic patients. However, when CCC were compared with seronegative individuals, it showed a nominal association in the meta-analysis (P = 0.040, OR = 1.20, 95%CI = 1.01-1.45). For the IL17A rs4711998 and rs8193036, no association was observed. In conclusion, our results suggest that IL17A rs2275913 plays an important role in the susceptibility to T. cruzi infection and could also be implicated in the development of chronic cardiomyopathy in the studied Latin American population.


Subject(s)
Chagas Disease/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Interleukin-17/genetics , Polymorphism, Genetic/genetics , Adult , Aged , Aged, 80 and over , Chagas Disease/etiology , Female , Humans , Latin America , Male , Meta-Analysis as Topic , Middle Aged
20.
Nat Commun ; 10(1): 4955, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672989

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.


Subject(s)
Fibrosis/genetics , Scleroderma, Systemic/genetics , Vascular Diseases/genetics , Bayes Theorem , Chromatin Immunoprecipitation , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...