Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(8): e0268881, 2022.
Article in English | MEDLINE | ID: mdl-36001537

ABSTRACT

PURPOSE: To evaluate the value of convolutional neural network (CNN) in the diagnosis of human brain tumor or Alzheimer's disease by MR spectroscopic imaging (MRSI) and to compare its Matthews correlation coefficient (MCC) score against that of other machine learning methods and previous evaluation of the same data. We address two challenges: 1) limited number of cases in MRSI datasets and 2) interpretability of results in the form of relevant spectral regions. METHODS: A shallow CNN with only one hidden layer and an ad-hoc loss function was constructed involving two branches for processing spectral and image features of a brain voxel respectively. Each branch consists of a single convolutional hidden layer. The output of the two convolutional layers is merged and fed to a classification layer that outputs class predictions for the given brain voxel. RESULTS: Our CNN method separated glioma grades 3 and 4 and identified Alzheimer's disease patients using MRSI and complementary MRI data with high MCC score (Area Under the Curve were 0.87 and 0.91 respectively). The results demonstrated superior effectiveness over other popular methods as Partial Least Squares or Support Vector Machines. Also, our method automatically identified the spectral regions most important in the diagnosis process and we show that these are in good agreement with existing biomarkers from the literature. CONCLUSION: Shallow CNNs models integrating image and spectral features improved quantitative and exploration and diagnosis of brain diseases for research and clinical purposes. Software is available at https://bitbucket.org/TeslaH2O/cnn_mrsi.


Subject(s)
Alzheimer Disease , Brain Neoplasms , Alzheimer Disease/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Neural Networks, Computer
2.
Anal Chim Acta ; 954: 22-31, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28081811

ABSTRACT

In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results.

SELECTION OF CITATIONS
SEARCH DETAIL
...