Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478689

ABSTRACT

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Chromosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Homologous Recombination/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Nature ; 582(7812): 426-431, 2020 06.
Article in English | MEDLINE | ID: mdl-32461690

ABSTRACT

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Pseudoautosomal Regions/genetics , Pseudoautosomal Regions/metabolism , Animals , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosome Pairing/genetics , DNA-Binding Proteins , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Kinetics , Male , Meiosis/genetics , Mice , Minisatellite Repeats/genetics , Oocytes/metabolism , Recombination, Genetic/genetics , Sex Characteristics , Sister Chromatid Exchange , Spermatocytes/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Mol Cell ; 74(5): 1053-1068.e8, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31003867

ABSTRACT

Double-strand breaks (DSBs) initiate the homologous recombination that is crucial for meiotic chromosome pairing and segregation. Here, we unveil mouse ANKRD31 as a lynchpin governing multiple aspects of DSB formation. Spermatocytes lacking ANKRD31 have altered DSB locations and fail to target DSBs to the pseudoautosomal regions (PARs) of sex chromosomes. They also have delayed and/or fewer recombination sites but, paradoxically, more DSBs, suggesting DSB dysregulation. Unrepaired DSBs and pairing failures-stochastic on autosomes, nearly absolute on X and Y-cause meiotic arrest and sterility in males. Ankrd31-deficient females have reduced oocyte reserves. A crystal structure defines a pleckstrin homology (PH) domain in REC114 and its direct intermolecular contacts with ANKRD31. In vivo, ANKRD31 stabilizes REC114 association with the PAR and elsewhere. Our findings inform a model in which ANKRD31 is a scaffold anchoring REC114 and other factors to specific genomic locations, thereby regulating DSB formation.


Subject(s)
Cell Cycle Proteins/physiology , Homologous Recombination/genetics , Meiosis/genetics , Recombinases/chemistry , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosome Pairing , Chromosome Segregation/genetics , Chromosomes , Crystallography, X-Ray , DNA Breaks, Double-Stranded , Female , Male , Mice , Protein Conformation , Recombinases/genetics , Spermatocytes/chemistry , Spermatocytes/metabolism
4.
J Cell Biol ; 217(10): 3398-3415, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30037925

ABSTRACT

Spp1 is the H3K4me3 reader subunit of the Set1 complex (COMPASS/Set1C) that contributes to the mechanism by which meiotic DNA break sites are mechanistically selected. We previously proposed a model in which Spp1 interacts with H3K4me3 and the chromosome axis protein Mer2 that leads to DSB formation. Here we show that spatial interactions of Spp1 and Mer2 occur independently of Set1C. Spp1 exhibits dynamic chromatin binding features during meiosis, with many de novo appearing and disappearing binding sites. Spp1 chromatin binding dynamics depends on its PHD finger and Mer2-interacting domain and on modifiable histone residues (H3R2/K4). Remarkably, association of Spp1 with Mer2 axial sites reduces the effective turnover rate and diffusion coefficient of Spp1 upon chromatin binding, compared with other Set1C subunits. Our results indicate that "chromosomal turnover rate" is a major molecular determinant of Spp1 function in the framework of meiotic chromatin structure that prepares recombination initiation sites for break formation.


Subject(s)
Chromosomes, Fungal/metabolism , DNA Breaks , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Homologous Recombination/physiology , Meiosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Fungal/genetics , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
Epigenetics ; 8(4): 355-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23511748

ABSTRACT

In Saccharomyces cerevisiae, all H3K4 methylation is performed by a single Set1 Complex (Set1C) that is composed of the catalytic (Set1) and seven other subunits (Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1 and Shg1). It has been known for quite some time that trimethylated H3K4 (H3K4me3) is enriched in the vicinity of meiotic double-strand breaks (DSBs), but the link between H3K4me3 and the meiotic nuclease Spo11 was uncovered only recently. The PHD-containing subunit Spp1, by interacting with H3K4me3 and Mer2, was shown to promote the recruitment of potential meiotic DSB sites to the chromosomal axis allowing their subsequent cleavage by Spo11. Therefore, Spp1 emerged as a key regulator of the H3K4 trimethylation catalyzed by Set1C and of the formation of meiotic DSBs. These findings illustrate the remarkable multifunctionality of Spp1, which not only regulates the catalytic activity of the enzyme (Set1), but also interacts with the deposited mark, and mediates its biological effect (meiotic DSB formation) independently of the complex. As it was previously described for Swd2, and now for Spp1, we anticipate that other Set1C subunits, in addition to regulating H3K4 methylation, may participate in diverse biological functions inside or outside of the complex.


Subject(s)
DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Lysine/metabolism , Meiosis , Methylation , Protein Subunits/genetics , Protein Subunits/metabolism , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Science ; 339(6116): 215-8, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23160953

ABSTRACT

During meiosis, combinatorial associations of genetic traits arise from homologous recombination between parental chromosomes. Histone H3 lysine 4 trimethylation marks meiotic recombination hotspots in yeast and mammals, but how this ubiquitous chromatin modification relates to the initiation of double-strand breaks (DSBs) dependent on Spo11 remains unknown. Here, we show that the tethering of a PHD-containing protein, Spp1 (a component of the COMPASS complex), to recombinationally cold regions is sufficient to induce DSB formation. Furthermore, we found that Spp1 physically interacts with Mer2, a key protein of the differentiated chromosomal axis required for DSB formation. Thus, by interacting with H3K4me3 and Mer2, Spp1 promotes recruitment of potential meiotic DSB sites to the chromosomal axis, allowing Spo11 cleavage at nearby nucleosome-depleted regions.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Histones/metabolism , Meiosis , Recombination, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/metabolism , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , Endodeoxyribonucleases/metabolism , Lysine/metabolism , Methylation , Protein Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...