Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 149(13): 134312, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30292192

ABSTRACT

Electronic structures and intramolecular interactions of three methoxyphenol positional isomers and their rotamers have been studied using core X-ray photoelectron spectroscopy and quantum mechanical calculations. The structural calculations are benchmarked against published calculations of enthalpy of formation and rotational constants, and published experimental data. The good agreement obtained confirms the accuracy of the results. A single rotamer of each isomer was then selected and the C 1s photoelectron spectra calculated and compared with experiment. Good agreement is obtained, and the calculations were extended to investigate the effects of conformation. For 3-methoxyphenol, the difference in the C 1s binding energy of the conformers is small, <0.15 eV. For 2-methoxyphenol, whose ground state includes an OH⋯OCH3 hydrogen bond, the higher energy rotamers show the largest shifts for the methyl carbon atom, whereas the ring carbon bonded to OH hardly shifts The theoretical differences in core level energies of the two rotamers of 4-MP are still smaller, <0.05 eV. By comparing calculations neglecting or including final state relaxation upon ionization, the relaxation energy of the phenyl carbons in all isomers is found to be ∼0.5 eV, while that of the methyl groups is ∼1.3 eV.

2.
Phys Chem Chem Phys ; 20(7): 4688-4698, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29372205

ABSTRACT

A model study of adenine adsorption on the Au(111) surface is reported for molecular adlayers prepared by evaporation in vacuum and deposition from saturated aqueous solution. The electronic structure and adsorption geometry of the molecular films were studied experimentally by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy. Adsorption models are proposed for the adlayers arising from the different preparation methods. Density functional theory calculations were used to examine both parallel and upright adenine adsorption geometries, supply additional information on the bond strength, and identify which atom is involved in bonding to Au(111). In the case of deposition in vacuum, the adenine molecule is bound via van der Waals forces to Au(111) with the molecular plane parallel to the surface, consistent with the published scanning tunneling microscopy data on this system. The most stable parallel adenine configuration was found to have an adsorption energy of ca. -1.1 eV using the optB86b-vdW functional. For adenine deposition from aqueous solution, the adlayer is disordered, with molecules in an upright geometry, and with an adsorption energy of ca. -1.0 eV, coordinated via the imino N3 nitrogen atom. The present study contributes to the substantial literature of model studies of adenine on Au(111), complementing the existing knowledge with information on electronic structure, bonding geometry and adsorption energy of this system.

3.
J Phys Chem C Nanomater Interfaces ; 121(1): 430-440, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28191270

ABSTRACT

The surface functionalization of TiO2-based materials with alkylsilanes is attractive in several cutting-edge applications, such as photovoltaics, sensors, and nanocarriers for the controlled release of bioactive molecules. (3-Aminopropyl)triethoxysilane (APTES) is able to self-assemble to form monolayers on TiO2 surfaces, but its adsorption geometry and solar-induced photodegradation pathways are not well understood. We here employ advanced experimental (XPS, NEXAFS, AFM, HR-TEM, and FT-IR) and theoretical (plane-wave DFT) tools to investigate the preferential interaction mode of APTES on anatase TiO2. We demonstrate that monomeric APTES chemisorption should proceed through covalent Si-O-Ti bonds. Although dimerization of the silane through Si-O-Si bonds is possible, further polymerization on the surface is scarcely probable. Terminal amino groups are expected to be partially involved in strong charge-assisted hydrogen bonds with surface hydroxyl groups of TiO2, resulting in a reduced propensity to react with other species. Solar-induced mineralization proceeds through preferential cleavage of the alkyl groups, leading to the rapid loss of the terminal NH2 moieties, whereas the Si-bearing head of APTES undergoes slower oxidation and remains bound to the surface. The suitability of employing the silane as a linker with other chemical species is discussed in the context of controlled degradation of APTES monolayers for drug release and surface patterning.

4.
Anal Chem ; 89(6): 3508-3516, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28194968

ABSTRACT

To understand the rate determining processes during the equilibration of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-based (PEDOT(PSS)-based) solid contact (SC) ion-selective electrodes (ISEs), the surfaces of Pt, Au, and GC electrodes were coated with 0.1, 1.0, 2.0, and 4.0 µm thick galvanostatically deposited PEDOT(PSS) films. Next, potential vs time transients were recorded with these electrodes, with and without an additional potassium ion-selective membrane (ISM) coating, following their first contact with 0.1 M KCl solutions. The transients were significantly different when the multilayered sensor structures were assembled on Au or GC compared to Pt. The differences in the rate of equilibration were interpreted as a consequence of differences in the hydrophilicity of PEDOT(PSS) in contact with the substrate electrode surfaces based on X-ray photoelectron spectroscopy (XPS) and synchrotron radiation-XPS (SR-XPS) analysis of 10-100 nm thick PEDOT(PSS) films. The influence of the layer thickness of the electrochemically deposited PEDOT(PSS)-films on the hydrophilicity of these films has been documented by contact angle measurements over PEDOT(PSS)-coated Au, GC, and Pt electrode surfaces. This study demonstrates that it is possible to minimize the equilibration (conditioning) time of SC ISEs with aqueous solutions before usage by optimizing the thickness of the SC layer with a controlled ISM thickness. PEDOT(PSS)-coated Au and GC electrodes exhibit a significant negative potential drift during their equilibration in an aqueous solution. By coating the PEDOT(PSS) surface with an ISM, the negative potential drift is compensated by a positive potential drift related to the hydration of the ISM and activity changes at the PEDOT(PSS)|ISM interface. The potential drifts related to activity changes in the ISM have been determined by a novel adaptation of the "sandwich membrane" method.

5.
J Phys Chem A ; 120(36): 7080-7, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27545582

ABSTRACT

The electronic structures of coumarin and three of its derivatives (7-amino-4-methylcoumarin, 7-amino-4-(trifluoro)methylcoumarin, and 4-hydroxycoumarin) have been studied by theoretical calculations, and compared with experimental valence and core photoelectron spectra to benchmark the predicted spectra. The outer valence band spectra of the first three compounds showed good agreement with theoretical calculations for a single isomer, whereas the spectrum of 4-hydroxycoumarin indicated the presence of more than one tautomer, consistent with published results. Calculations of core level spectra of carbon, nitrogen, oxygen, and fluorine of the first three compounds are also in satisfactory agreement with our measurements. The carbon and oxygen 1s spectra of 4-hydroxycoumarin allow us to identify and quantify the populations of the principle tautomers present. The 4-hydroxy enol form is the most stable isomer at 348 K, followed by the diketo form, with 1.3 kJ·mol(-1) lower energy.


Subject(s)
Coumarins/chemistry , Photoelectron Spectroscopy/methods , 4-Hydroxycoumarins/chemistry , Carbon/chemistry , Isomerism , Oxygen/chemistry , Quantum Theory
6.
Chem Commun (Camb) ; 52(62): 9703-6, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27405722

ABSTRACT

This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs.

7.
Anal Chem ; 88(13): 6939-46, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27266678

ABSTRACT

We report on the limiting conditions for ion-transfer voltammetry between an ion-exchanger doped and plasticized poly(vinyl chloride) (PVC) membrane and an electrolyte solution that was triggered via the oxidation of a poly(3-octylthiophene) (POT) solid-contact (SC), which was unexpectedly related to the thickness of the POT SC. An electropolymerized 60 nm thick film of POT coated with a plasticized PVC membrane exhibited a significant sodium transfer voltammetric signal whereas a thicker film (180 nm) did not display a measurable level of ion transfer due to a lack of oxidation of thick POT beneath the membrane film. In contrast, this peculiar phenomenon was not observed when the POT film was in direct contact with an organic solvent-based electrolyte. This evidence is indicative of three key points: (i) the coated membrane imposes a degree of rigidity to the system, which restricts the swelling of the POT film and its concomitant p-doping; (ii) this phenomenon is exacerbated with thicker POT films due to an initial morphology (rougher comprising a network of large POT nanoparticles), which gives rise to a diminished surface area and electrochemical reactivity in the POT SC; (iii) the rate of sodium transfer is higher with a thin POT film due to a smoother surface morphology made up of a network of smaller POT nanoparticles with an increased surface area and electrochemical reactivity. A variety of techniques including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry, scanning electron microscopy (SEM), atomic force microscopy (AFM), and synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) were used to elucidate the mechanism of the POT thickness/POT surface roughness dependency on the electrochemical reactivity of the PVC/POT SC system.

8.
J Chem Phys ; 143(17): 174704, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26547179

ABSTRACT

The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.


Subject(s)
Adenine/chemistry , Copper/chemistry , Photoelectron Spectroscopy , X-Ray Absorption Spectroscopy , Molecular Structure , Surface Properties
9.
Chem Commun (Camb) ; 51(46): 9483-6, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25962437

ABSTRACT

This work demonstrates that immobilising molecular catalysts on metal substrates can attenuate their reactivity. In particular, the reactivity towards molecular oxygen of both ruthenium tetraphenyl porphyrin (Ru-TPP) and its Ti analogue (Ti-TPP) on Ag(111) was studied as benchmark for the interaction strength of such metal-organic complexes with possible reactants. Here, Ru-TPP proves to be completely unreactive and Ti-TPP strongly reactive towards molecular oxygen; along with comparison to work in the literature, this suggests that studies into immobilised catalysts might find fruition in considering species traditionally seen as too strongly interacting.

10.
Phys Chem Chem Phys ; 17(4): 2770-7, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25500980

ABSTRACT

The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.


Subject(s)
Cerium/chemistry , Histidine/chemistry , Nanostructures/chemistry , Surface Properties
11.
J Am Chem Soc ; 136(26): 9346-54, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24955656

ABSTRACT

The templated synthesis of porphyrin dimers, oligomers, and tapes has recently attracted considerable interest. Here, we introduce a clean, temperature-induced covalent dehydrogenative coupling mechanism between unsubstituted free-base porphine units yielding dimers, trimers, and larger oligomers directly on a Ag(111) support under ultrahigh-vacuum conditions. Our multitechnique approach, including scanning tunneling microscopy, near-edge X-ray absorption fine structure and photoelectron spectroscopy complemented by theoretical modeling, allows a comprehensive characterization of the resulting nanostructures and sheds light on the coupling mechanism. We identify distinct coupling motifs and report a decrease of the electronic gap and a modification of the frontier orbitals directly associated with the formation of triply fused dimeric species. This new on-surface homocoupling protocol yields covalent porphyrin nanostructures addressable with submolecular resolution and provides prospective model systems towards the exploration of extended oligomers with tailored chemical and physical properties.


Subject(s)
Porphyrins/chemistry , Dimerization , Microscopy, Scanning Tunneling , Nanostructures/chemistry , Photoelectron Spectroscopy , Porphyrins/metabolism , Silver/chemistry , X-Ray Absorption Spectroscopy
12.
J Phys Chem A ; 118(20): 3645-54, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24821292

ABSTRACT

The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using theoretical calculations and core and valence photoelectron spectroscopy. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yield cycloserine. Theory correctly predicts the C, N, and O 1s core spectra, and additionally, we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds shows superficial similarities, further analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The highest occupied molecular orbital (HOMO) of CS shows leading carbonyl π character with contributions from other heavy (non-H) atoms in the molecule, while the HOMO of 2-oxazolidinone (OX2) has leading nitrogen, carbon, and oxygen pπ characters. The present study further theoretically predicts bond resonance effects of the compounds, evidence for which is provided by our experimental measurements and published crystallographic data.


Subject(s)
Cycloserine/chemistry , Oxazolidinones/chemistry , Quantum Theory , Molecular Structure , Photoelectron Spectroscopy
13.
J Phys Chem B ; 117(31): 9182-93, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23819878

ABSTRACT

Adsorption of histidine on cerium oxide model surfaces was investigated by synchrotron radiation photoemission, resonant photoemission, and near edge X-ray absorption fine structure spectroscopies. Histidine was evaporated in a vacuum onto ordered stoichiometric CeO2(111) and partially reduced CeO1.9 thin films grown on Cu(111). Histidine binds to CeO2 in anionic form via the carboxylate group and all three nitrogen atoms, with the imidazole ring parallel to the surface. The amino nitrogen atom of the imidazole ring (IM) is deprotonated, and both IM nitrogen atoms form strong bonds via π orbitals, while the α-amino nitrogen interacts with the oxide via its hydrogen atoms. In the case of CeO1.9, the deprotonation of the amino nitrogen of the imidazole ring is less pronounced and N K-edge spectra do not show a clear orientation of the ring with respect to the surface. A minor reduction of the cerium surface on adsorption of histidine was observed and explained by charge exchange as a result of hybridization of the π orbitals of the IM ring with the f and d orbitals of ceria. Knowledge of histidine adsorption on the cerium oxide surface can be used for design of mediator-less biosensors where the histidine-containing proteins can be strongly bound to the oxide surface via the imidazole side chain of this residue.


Subject(s)
Cerium/chemistry , Histidine/chemistry , Adsorption , Nanostructures/chemistry , Temperature , Thermodynamics
14.
ACS Nano ; 7(5): 4520-6, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23641683

ABSTRACT

The fabrication and control of coordination compounds or architectures at well-defined interfaces is a thriving research domain with promise for various research areas, including single-site catalysis, molecular magnetism, light-harvesting, and molecular rotors and machines. To date, such systems have been realized either by grafting or depositing prefabricated metal-organic complexes or by protocols combining molecular linkers and single metal atoms at the interface. Here we report a different pathway employing metal-organic chemical vapor deposition, as exemplified by the reaction of meso-tetraphenylporphyrin derivatives on atomistically clean Ag(111) with a metal carbonyl precursor (Ru3(CO)12) under vacuum conditions. Scanning tunneling microscopy and X-ray spectroscopy reveal the formation of a meso-tetraphenylporphyrin cyclodehydrogenation product that readily undergoes metalation after exposure to the Ru-carbonyl precursor vapor and thermal treatment. The self-terminating porphyrin metalation protocol proceeds without additional surface-bound byproducts, yielding a single and thermally robust layer of Ru metalloporphyrins. The introduced fabrication scheme presents a new approach toward the realization of complex metal-organic interfaces incorporating metal centers in unique coordination environments.

15.
Langmuir ; 26(23): 17785-9, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21069959

ABSTRACT

We present strong evidence for the oxidation of conjugated polymers in the formation of conjugated polymer dots (CPdots) using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Although recent studies show that folding of the polymer chain into a compact 3D structure is involved in the formation of these nanoparticles, the process by which these intrinsically hydrophobic nanoscale particles circumvent aggregation in water is still not well understood. Zeta potential results show that these dots have a negatively charged surface at neutral pH, with a zeta potential and surface charge density of approximately -40 mV and (1.39 - 1.70) × 10(-2) C/m(2), respectively. In addition, quantitative elemental analysis of CPdots indicates that oxygen composes 7-13% of these nanoparticles. The overall results support the presence of chemical defects in forming a hydrophilic surface of CPdots. As a consequence, the charged surface contributes to inhibiting the aggregation of CPdots in water, leading to colloidal stability.


Subject(s)
Polymers/chemistry , Spectrometry, X-Ray Emission/methods , Colloids/chemistry , Fluorescent Dyes/pharmacology , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force/methods , Nanoparticles/chemistry , Nanotechnology/methods , Oxygen/chemistry , Particle Size , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...