Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Physiol Pharmacol ; 66(2): 215-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25903952

ABSTRACT

During ischaemia/reperfusion, the rise in [Na(+)](i), induced by simultaneous depression of the Na(+)/K(+)-ATPase and activation of the Na(+)/H(+) exchanger (NHE), shifts the Na(+)/Ca(2+) exchanger (NCX) into reverse transport mode, resulting in Ca(2+)(i)overload, which is a critical factor in enhancing the liability to cardiac arrhythmias. The inhibition of NHE, and recently NCX has been suggested to effectively protect the heart from reperfusion-induced arrhythmias. In this study, we investigated and compared the efficacy of individual or the simultaneous inhibition of the NHE and NCX against reperfusion-induced arrhythmias in Langendorff-perfused rat hearts by applying a commonly used regional ischaemia-reperfusion protocol. The NHE and NCX were inhibited by cariporide and SEA0400 or the novel, more selective ORM-10103, respectively. Arrhythmia diagrams calculated for the reperfusion period were analysed for the incidence and duration of extrasystoles (ESs), ventricular tachycardia (VT) and ventricular fibrillation (VF). NHE inhibition by cariporide was highly efficient in reducing the recorded reperfusion-induced arrhythmias. Following the application of SEA0400 or ORM-10103, the number and duration of arrhythmic periods were efficiently or moderately decreased. While both NCX inhibitors effectively reduced ESs, the most frequently triggered arrhythmias, they exerted limited or no effect on VTs and VFs. Of the NCX inhibitors, ORM-10103 was more effective. Surprisingly, the simultaneous inhibition of the NCX and NHE failed to significantly improve the antiarrhythmic efficacy reached by NCX blockade alone. In conclusion, although principal simultaneous NHE+NCX inhibition should be highly effective against all types of the recorded reperfusion-induced arrhythmias, NCX inhibitors, alone or in combination with cariporide, seem to be moderately suitable to provide satisfactory cardioprotection - at least in the present arrhythmia model. Since ORM-10103 and SEA0400 are known to effectively inhibit after-depolarisations, it is suggested that their efficacy and that of other NCX inhibitors may be higher and more pronounced in the predominantly Ca(2+)(i)-dependent triggered arrhythmias.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/drug therapy , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Arrhythmias, Cardiac/metabolism , Benzopyrans/pharmacology , Calcium/metabolism , Cardiotonic Agents/pharmacology , Drug Therapy, Combination/methods , Guanidines/pharmacology , Male , Myocardial Reperfusion/methods , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenyl Ethers/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Sulfones/pharmacology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/metabolism , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/metabolism
3.
Br J Pharmacol ; 170(4): 768-78, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23647096

ABSTRACT

BACKGROUND AND PURPOSE: At present there are no small molecule inhibitors that show strong selectivity for the Na(+) /Ca(2+) exchanger (NCX). Hence, we studied the electrophysiological effects of acute administration of ORM-10103, a new NCX inhibitor, on the NCX and L-type Ca(2+) currents and on the formation of early and delayed afterdepolarizations. EXPERIMENTAL APPROACH: Ion currents were recorded by using a voltage clamp technique in canine single ventricular cells, and action potentials were obtained from canine and guinea pig ventricular preparations with the use of microelectrodes. KEY RESULTS: ORM-10103 significantly reduced both the inward and outward NCX currents. Even at a high concentration (10 µM), ORM-10103 did not significantly change the L-type Ca(2+) current or the maximum rate of depolarization (dV/dtmax ), indicative of the fast inward Na(+) current. At 10 µM ORM-10103 did not affect the amplitude or the dV/dtmax of the slow response action potentials recorded from guinea pig papillary muscles, which suggests it had no effect on the L-type Ca(2+) current. ORM-10103 did not influence the Na(+) /K(+) pump or the main K(+) currents of canine ventricular myocytes, except the rapid delayed rectifier K(+) current, which was slightly diminished by the drug at 3 µM. The amplitudes of pharmacologically- induced early and delayed afterdepolarizations were significantly decreased by ORM-10103 (3 and 10 µM) in a concentration-dependent manner. CONCLUSIONS AND IMPLICATIONS: ORM-10103 is a selective inhibitor of the NCX current and can abolish triggered arrhythmias. Hence, it has the potential to be used to prevent arrhythmogenic events.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Benzopyrans/pharmacology , Heart Ventricles/drug effects , Myocytes, Cardiac/drug effects , Pyridines/pharmacology , Sodium-Calcium Exchanger/antagonists & inhibitors , Action Potentials , Animals , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Dogs , Dose-Response Relationship, Drug , Female , Guinea Pigs , Heart Ventricles/metabolism , Male , Myocytes, Cardiac/metabolism , Papillary Muscles/drug effects , Papillary Muscles/metabolism , Potassium/metabolism , Purkinje Fibers/drug effects , Purkinje Fibers/metabolism , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism , Time Factors
4.
Br J Pharmacol ; 154(1): 93-104, 2008 May.
Article in English | MEDLINE | ID: mdl-18332852

ABSTRACT

BACKGROUND AND PURPOSE: The Na(+)/Ca(2+) exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na(+) concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 microM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na(+) concentrations in rabbit and rat hearts. EXPERIMENTAL APPROACH: The concentration-dependent effects of SEA0400 on I(Na/Ca) were studied in rat and rabbit ventricular cardiomyocytes using a patch clamp technique. Starling curves were constructed for isolated, Langendorff-perfused rat and rabbit hearts. The cardiac sarcolemmal NCX protein densities of both species were compared by immunohistochemistry. KEY RESULTS: SEA0400 inhibited I(Na/Ca) with similar efficacy in the two species; there was no difference between the inhibitions of the forward or reverse mode of the NCX in either species. SEA0400 increased the systolic and the developed pressure in the rat heart in a concentration-dependent manner, for example, 1.0 microM SEA0400 increased the maximum systolic pressures by 12% relative to the control, whereas it failed to alter the contractility in the rabbit heart. No interspecies difference was found in the cardiac sarcolemmal NCX protein densities. CONCLUSIONS AND IMPLICATIONS: NCX inhibition exerted a positive inotropic effect in the rat heart, but it did not influence the contractility of the rabbit heart. This implies that the AP configuration and the intracellular Na(+) concentration may play an important role in the contractility response to NCX inhibition.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/drug effects , Myocardial Contraction/drug effects , Sodium-Calcium Exchanger/antagonists & inhibitors , Action Potentials/drug effects , Aniline Compounds/pharmacology , Animals , Blood Pressure/drug effects , Coronary Circulation/drug effects , Electrocardiography/drug effects , Heart Rate/drug effects , Immunohistochemistry , Microscopy, Confocal , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Phenyl Ethers/pharmacology , Rabbits , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...