Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 733357, 2021.
Article in English | MEDLINE | ID: mdl-34631859

ABSTRACT

Emerging infectious diseases in wildlife are increasingly associated with animal mortality and species declines, but their source and genetic characterization often remains elusive. Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has been associated with catastrophic and well-documented amphibian population declines and extinctions at the global scale. We used histology and whole-genome sequencing to describe the lesions caused by, and the genetic variability of, two Bd isolates obtained from a mass mortality event in a captive population of the threatened Chilean giant frog (Calyptocephalella gayi). This was the first time an association between Bd and high mortality had been detected in this charismatic and declining frog species. Pathological examinations revealed that 30 dead metamorphosed frogs presented agnathia or brachygnathia, a condition that is reported for the first time in association with chytridiomycosis. Phylogenomic analyses revealed that Bd isolates (PA1 and PA2) from captive C. gayi group with other Bd isolates (AVS2, AVS4, and AVS7) forming a single highly supported Chilean Bd clade within the global panzootic lineage of Bd (BdGPL). These findings are important to inform the strengthening of biosecurity measures to prevent the impacts of chytridiomycosis in captive breeding programs elsewhere.

2.
Conserv Physiol ; 4(1): cow056, 2016.
Article in English | MEDLINE | ID: mdl-27933168

ABSTRACT

Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi. In particular, the maximal righting performance (µMAX), optimal temperature (TO), lower (CTmin) and upper critical thermal limits (CTmax), thermal breadth (Tbr) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of µmax and AUC in X. laevis in comparison to C. gayi. On the contrary, the invasive species showed lower values of CTmin in comparison to the native one. In contrast, CTmax, TO and Tbr showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi. Although there were differences in CTmin, the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.

SELECTION OF CITATIONS
SEARCH DETAIL
...