Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771913

ABSTRACT

This review summarizes the relevant developments in preparing wrinkled structures with variable characteristics. These include the formation of smart interfaces with reversible wrinkle formation, the construction of wrinkles in non-planar supports, or, more interestingly, the development of complex hierarchically structured wrinkled patterns. Smart wrinkled surfaces obtained using light-responsive, pH-responsive, temperature-responsive, and electromagnetic-responsive polymers are thoroughly described. These systems control the formation of wrinkles in particular surface positions and the reversible construction of planar-wrinkled surfaces. This know-how of non-planar substrates has been recently extended to other structures, thus forming wrinkled patterns on solid, hollow spheres, cylinders, and cylindrical tubes. Finally, this bibliographic analysis also presents some illustrative examples of the potential of wrinkle formation to create more complex patterns, including gradient structures and hierarchically multiscale-ordered wrinkles. The orientation and the wrinkle characteristics (amplitude and period) can also be modulated according to the requested application.

2.
Polymers (Basel) ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36235989

ABSTRACT

Bone implants or replacements are very scarce due to the low donor availability and the high rate of body rejection. For this reason, tissue engineering strategies have been developed as alternative solutions to this problem. This research sought to create a cellular scaffold with an intricate and complex network of interconnected pores and microchannels using salt leaching and additive manufacturing (3D printing) methods that mimic the hierarchical internal structure of the bone. A biocompatible hydrogel film (based on poly-ethylene glycol) was used to cover the surface of different polymeric scaffolds. This thin film was then exposed to various stimuli to spontaneously form wrinkled micropatterns, with the aim of increasing the contact area and the material's biocompatibility. The main innovation of this study was to include these wrinkled micropatterns on the surface of the scaffold by taking advantage of thin polymer film surface instabilities. On the other hand, salt and nano-hydroxyapatite (nHA) particles were included in the polymeric matrix to create a modified filament for 3D printing. The printed part was leached to eliminate porogen particles, leaving homogenously distributed pores on the structure. The pores have a mean size of 26.4 ± 9.9 µm, resulting in a global scaffold porosity of ~42% (including pores and microchannels). The presence of nHA particles, which display a homogeneous distribution according to the FE-SEM and EDX results, have a slight influence on the mechanical resistance of the material, but incredibly, despite being a bioactive compound for bone cells, did not show a significant increase in cell viability on the scaffold surface. However, the synergistic effect between the presence of the hydrogel and the pores on the material does produce an increase in cell viability compared to the control sample and the bare PCL material.

SELECTION OF CITATIONS
SEARCH DETAIL
...