Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrine ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008201

ABSTRACT

PURPOSE: One of the key functions of brown adipose tissue is its positive impact on metabolism. This study aimed to examine the potential involvement of brown fat-related hormones in the development of metabolically healthy obesity. Specifically, we sought to compare the levels of NRG4, FGF21, and irisin between metabolically healthy and unhealthy individuals with obesity. METHODS: Patients with BMI ≥ 30 kg/m2 and aged between 20 and 50 years were included in the study. Among these patients, those who did not have any metabolic syndrome criteria except for increased waist circumference were defined as metabolically healthy obese. Age, gender, BMI, body fat, and muscle mass, matched metabolically healthy and unhealthy obese groups were compared in terms of FGF21, irisin, and NRG4 levels. RESULTS: Metabolically healthy and unhealthy obese groups were similar in terms of age and gender. There was no difference between the two groups in terms of BMI, weight, total body fat, muscle, fat-free mass, distribution of body fat and muscle mass. No statistically significant difference was found between irisin, NRG4, and FGF21 levels between metabolically healthy and unhealthy individuals with obesity. It was found that irisin had a significant inverse correlation with BMI and body fat percentage. CONCLUSION: The present study showed no difference between metabolically healthy and unhealthy obese individuals in terms of irisin, FGF21, and NRG4 levels. The weak association between irisin and BMI and body fat percentage may suggest a potential link between irisin with metabolic health.

2.
Cureus ; 15(4): e37843, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37214082

ABSTRACT

Background Peptides related to calcitonin gene-related peptide (CGRP) have been suggested to have a role in migraine. Adrenomedullin (AM) might be a candidate molecule because it is related to pain pathways in the peripheral and central nervous systems and uses the same receptors as CGRP. Methodology In this study, we examined the serum CGRP and AM levels during unprovoked ictal and interictal periods of 30 migraine patients as well as 25 healthy controls. Another focus of this study was on the association of CGRP and AM levels with clinical features. Results Mean serum AM levels were 15.80 pg/mL (11.91-21.43 pg/mL) in the ictal and 15.85 pg/mL (12.25-19.29 pg/mL) in the interictal periods in the migraine group and 13.36 pg/mL (10.84-17.18 pg/mL) in the control group. Mean serum CGRP levels were 2.93 pg/mL (2.45-3.90 pg/mL) in the ictal and 3.25 pg/mL (2.85-4.67 pg/mL) in the interictal periods in the migraine group and 3.03 pg/mL (2.48-3.80 pg/mL) in the control group. There were no statistical differences between ictal and/or interictal AM and CGRP levels (p = 0.558 and p = 0.054, respectively) which were also comparable with the results of the control group (p = 0.230, p = 0.295, p = 0.987, p = 0.139, respectively). Ictal serum CGRP and/or AM levels did not correlate with any of the reported clinical features. Conclusions Serum AM and CGRP levels are similar in interictal and unprovoked ictal periods in migraine patients and as well in controls. These results do not indicate that these molecules do not have a role in migraine pathophysiology. Considering the broad mechanisms of action of peptides in the CGRP family, further studies are needed in larger cohorts.

3.
Turk J Haematol ; 39(1): 22-28, 2022 02 23.
Article in English | MEDLINE | ID: mdl-33882633

ABSTRACT

Objective: Low glutamine levels have been shown in tumor environments for several cancer subtypes. Therefore, it has been suggested that cancer cells rewire their metabolism to adopt low nutrient levels for survival and proliferation. Although glutamine is a non-essential amino acid and can be synthesized de novo, many cancer cells including malignant hematopoietic cells have been indicated to be addicted to glutamine. This study aimed to investigate the proliferation of leukemia cell lines in glutamine-deprived conditions. Materials and Methods: Cell proliferation of K562, NB-4, and HL-60 cells was determined by calculating cell numbers in normal vs. low glutamine media. Changes in mRNA expressions were investigated using qRT-PCR. The glutamine synthetase (GS)-encoding GLUL gene was knocked out (KO) in HL-60 cells using the CRISPR/Cas9 method and protein expression was evaluated with immunoblotting. Results: The proliferation of all cell lines was decreased in glutamine-deprived medium. GS protein expression was increased in glutamine-limited medium although the mRNA level did not change. Increased protein expression was confirmed with inhibition of new protein synthesis by treating cells with cycloheximide. To further investigate the role of GS protein, the GS-encoding GLUL gene was KO in HL-60 cells using the CRISPR/Cas9 method. GS KO cells proliferated less compared to control cells in glutamine-limited medium. Conclusion: Our results indicate that upregulated GS protein expression is responsible for glutamine addiction of leukemia cell lines. Exploiting the genetic and metabolic mechanisms responsible for GS protein expression could lead to the identification of new anti-cancer drug targets.


Subject(s)
Glutamate-Ammonia Ligase , Glutamine , Leukemia , Cell Line, Tumor , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine/deficiency , HL-60 Cells , Humans , Leukemia/genetics , Leukemia/metabolism , RNA, Messenger/metabolism
4.
Gene ; 809: 146012, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34655719

ABSTRACT

Cancer cells rewire metabolic pathways as they demand more ATP and building blocks for proliferation. Glucose is the most consumed nutrient by cancer cells and metabolized to lactate even in the presence of oxygen. This phenomenon is called 'aerobic glycolysis'. Also, glucose level is found lower in tumor environment. Leukemia is characterized by abnormal proliferation of hematopoietic cells. STAT3 a transcription factor and an oncogene is upregulated in many tumor types. Despite its well-defined functions, STAT3 has also been proposed as a metabolic regulator. In this study, we aimed to determine the role STAT3 activation in glucose limitation, in leukemia cell lines. K562, NB-4 and HL-60 cells were found sensitive to glucose limitation. In low glucose conditions, total and nuclear STAT3 protein was decreased in all cells. In mitochondria, S727 phosphorylated STAT3 (mitochondrial form) was determined slightly increased in K562 and NB-4 cells. On the other side, ectopically STAT3 expressing cells had increased glucose consumption and less proliferated in low glucose medium. This data suggests that aerobic glycolysis might be upregulated upon STAT3 expression in leukemia cells, in glucose limitation. Furthermore, in this study, it was found that GLUT3 expressing cells did not reduce STAT3 expression in low glucose medium. GLUT3 was previously determined as a molecular marker for cell sensitivity to glucose limitation, therefore, it could be hypothesized as GLUT3 expressing cells might not need to alter STAT3 expression in low glucose level. Overall, our data suggest that leukemia cells rewire glucose metabolism via STAT3 expression in glucose limitation. Elucidating pathways that cause differential phosphorylation of STAT3 and its interaction with other energy regulating pathways in cellular response to glucose limitation might be beneficial to design new drug targets such as STAT3 inhibitors for leukemia treatment.


Subject(s)
Glucose/metabolism , Leukemia/metabolism , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Cell Proliferation , Culture Media/chemistry , Down-Regulation , Gene Expression Regulation, Leukemic , Glucose Transporter Type 3/metabolism , Glycolysis/physiology , HL-60 Cells , Humans , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mitochondria/metabolism , STAT3 Transcription Factor/genetics
5.
Mol Biol Rep ; 48(4): 3205-3212, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33948854

ABSTRACT

It is known that oxidative stress may cause neuronal injury and several experimental models showed that As2O3 exposure causes oxidative stress. Lycopene, a carotenoid, has been shown to have protective effect in neurological disease models due to antioxidant activity, but its effect on As2O3-induced neurotoxicity is not identified yet. The aim of this study is to investigate the effects of lycopene on As2O3-induced neuronal damage and the related mechanisms. Cell viability was determined by the MTT assay. Lycopene was administrated with different concentrations (2, 4, 6 and 8 µM) one hour before 2 µM As2O3 exposure in SH-SY5Y human neuroblastoma cells. The anti-oxidant effect of lycopene was determined by measuring superoxide dismutase (SOD), catalase (CAT) hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS). MTT results and LDH cytotoxicity analyses showed that pretreatment with 8 µM lycopene significantly improved the toxicity due to As2O3 exposure in SH­SY5Y neuroblastoma cells. Pretreatment with lycopene significantly increased the activities of anti­oxidative enzymes as well as total antioxidant status and decreased total oxidative status in As2O3 exposed cells. The results of this study indicate that lycopene may be a potent neuroprotective against oxidative stress and could be used to prevent neuronal injury or death in several neurological diseases.


Subject(s)
Lycopene/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Arsenic Trioxide/toxicity , Cell Line, Tumor , Humans , Neurons/drug effects , Neurons/pathology
6.
Andrologia ; 53(4): e14000, 2021 May.
Article in English | MEDLINE | ID: mdl-33550644

ABSTRACT

This study was performed to evaluate the effect of liraglutide on experimental testicular ischaemia reperfusion in rats in terms of biochemistry, histopathology and immunohistochemistry. A total of 28 male Wistar-Albino rats were divided randomly into 4 groups: control (7), sham (7), ischaemia-reperfusion (7) and ischaemia-reperfusion + liraglutide (7). Biochemically, Nitric Oxide, Malondialdehyde, Superoxide dismutase, Glutathione peroxidase and Catalase levels were measured in the testis. Apoptosis protease activating factor-1 and inducible nitric oxide synthase activity were evaluated immunohistochemically as well. Statistical analyses were made via the Kruskal-Wallis and Mann-Whitney U tests. In the reperfusion group, CAT and SOD values were increased (p > .05), NO and MDA values were decreased (p < .05) after administration of liraglutide. In addition, GPx values were significantly increased in ischaemia reperfusion + liraglutide administered group compared to reperfusion group (p < .05). Apaf-1 and iNOS activity were significantly decreased with the addition of liraglutide treatment to the ischaemia-reperfusion group (p < .05). First of all, we would like to say that liraglutide treatment is moderately preventive against I/R injury in testicular torsion. The anti-inflammatory, antioxidant and antiapoptotic properties of liraglutide are create a moderately protective effect as we show in this study.


Subject(s)
Reperfusion Injury , Spermatic Cord Torsion , Animals , Humans , Ischemia , Liraglutide/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Malondialdehyde/metabolism , Oxidative Stress , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Spermatic Cord Torsion/metabolism , Superoxide Dismutase/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...