Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 220(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36346347

ABSTRACT

Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.


Subject(s)
Interferon Type I , Nucleic Acids , Mice , Animals , SAM Domain and HD Domain-Containing Protein 1/genetics , Immunity, Innate/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism
2.
J Immunol ; 197(6): 2157-66, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27511730

ABSTRACT

Defects of the intracellular enzyme 3' repair exonuclease 1 (Trex1) cause the rare autoimmune condition Aicardi-Goutières syndrome and are associated with systemic lupus erythematosus. Trex1(-/-) mice develop type I IFN-driven autoimmunity, resulting from activation of the cytoplasmic DNA sensor cyclic GMP-AMP synthase by a nucleic acid substrate of Trex1 that remains unknown. To identify cell types responsible for initiation of autoimmunity, we generated conditional Trex1 knockout mice. Loss of Trex1 in dendritic cells was sufficient to cause IFN release and autoimmunity, whereas Trex1-deficient keratinocytes and microglia produced IFN but did not induce inflammation. In contrast, B cells, cardiomyocytes, neurons, and astrocytes did not show any detectable response to the inactivation of Trex1. Thus, individual cell types differentially respond to the loss of Trex1, and Trex1 expression in dendritic cells is essential to prevent breakdown of self-tolerance ensuing from aberrant detection of endogenous DNA.


Subject(s)
Autoimmunity , Dendritic Cells/physiology , Exodeoxyribonucleases/physiology , Phosphoproteins/physiology , Animals , Antigens, CD19/physiology , B-Lymphocytes/physiology , Brain/immunology , Exodeoxyribonucleases/deficiency , Interferon Type I/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...