Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 41: 247-52, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27090588

ABSTRACT

UNLABELLED: In contrast to modification with conventional PEO-silanes (i.e. no siloxane tether), silicones with dramatically enhanced protein resistance have been previously achieved via bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-PEOn-OCH3 when n=8 and 16 but not when n=3. In this work, their efficacy was evaluated in terms of optimal PEO-segment length and minimum concentration required in silicone. For each PEO-silane amphiphile (n=3, 8, and 16), five concentrations (5, 10, 25, 50, and 100µmol per 1g silicone) were evaluated. Efficacy was quantified in terms of the modified silicones' abilities to undergo rapid, water-driven surface restructuring to form hydrophilic surfaces as well as resistance to fibrinogen adsorption. Only n=8 and 16 were effective, with a lower minimum concentration in silicone required for n=8 (10µmol per 1g silicone) versus n=16 (25µmol per 1g silicone). STATEMENT OF SIGNIFICANCE: Silicone is commonly used for implantable medical devices, but its hydrophobic surface promotes protein adsorption which leads to thrombosis and infection. Typical methods to incorporate poly(ethylene oxide) (PEO) into silicones have not been effective due to the poor migration of PEO to the surface-biological interface. In this work, PEO-silane amphiphiles - comprised of a siloxane tether (m=13) and variable PEO segment lengths (n=3, 8, 16) - were blended into silicone to improve its protein resistance. The efficacy of the amphiphiles was determined to be dependent on PEO length. With the intermediate PEO length (n=8), water-driven surface restructuring and resulting protein resistance was achieved with a concentration of only 1.7wt%.


Subject(s)
Fibrinogen/chemistry , Polyethylene Glycols/chemistry , Silanes/chemistry , Surface-Active Agents/chemistry , Adsorption , Humans , Silicones/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...