Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(1): 228-253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177915

ABSTRACT

Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we combine a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we find that CHOP promotes death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP confers to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggest that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.


Subject(s)
Endoplasmic Reticulum Stress , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Endoplasmic Reticulum Stress/genetics , Cell Death , Unfolded Protein Response
2.
Hepatol Commun ; 7(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37820274

ABSTRACT

BACKGROUND: In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet, ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which are largely unknown. METHODS: Here, we combined in silico machine learning, in vivo liver-specific deletion of the master regulator of hepatocyte differentiation HNF4α, and in vitro manipulation of hepatocyte differentiation state to determine how the UPR regulates hepatocyte identity and toward what end. RESULTS: Machine learning identified a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. CONCLUSIONS: Together, our findings suggest that the UPR regulates hepatocyte identity through HNF4α to protect ER homeostasis even at the expense of liver function.


Subject(s)
Endoplasmic Reticulum , Gene Regulatory Networks , Gene Regulatory Networks/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Hepatocytes/metabolism , Liver/metabolism
3.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-36993175

ABSTRACT

Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we have combined a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we found that CHOP promoted death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP conferred to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggested that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...