Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585901

ABSTRACT

Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer's individuals.

2.
IEEE Trans Biomed Eng ; PP2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345949

ABSTRACT

OBJECTIVE: Brain function is understood to be regulated by complex spatiotemporal dynamics, and can be characterized by a combination of observed brain response patterns in time and space. Magnetoencephalography (MEG), with its high temporal resolution, and functional magnetic resonance imaging (fMRI), with its high spatial resolution, are complementary imaging techniques with great potential to reveal information about spatiotemporal brain dynamics. Hence, the complementary nature of these imaging techniques holds much promise to study brain function in time and space, especially when the two data types are allowed to fully interact. METHODS: We employed coupled tensor/matrix factorization (CMTF) to extract joint latent components in the form of unique spatiotemporal brain patterns that can be used to study brain development and function on a millisecond scale. RESULTS: Using the CMTF model, we extracted distinct brain patterns that revealed fine-grained spatiotemporal brain dynamics and typical sensory processing pathways informative of high-level cognitive functions in healthy adolescents. The components extracted from multimodal tensor fusion possessed better discriminative ability between high- and low-performance subjects than single-modality data-driven models. CONCLUSION: Multimodal tensor fusion successfully identified spatiotemporal brain dynamics of brain function and produced unique components with high discriminatory power. SIGNIFICANCE: The CMTF model is a promising tool for high-order, multimodal data fusion that exploits the functional resolution of MEG and fMRI, and provides a comprehensive picture of the developing brain in time and space.

3.
Biol Psychiatry ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070846

ABSTRACT

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

4.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014169

ABSTRACT

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.

5.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745533

ABSTRACT

We present Multimodal Subspace Independent Vector Analysis (MSIVA), a methodology to capture both joint and unique vector sources across multiple data modalities by defining linked and modality-specific subspaces. In particular, MSIVA enables the estimation of independent subspaces of various sizes within modalities and their one-to-one linkage to corresponding subspaces across modalities. We compare MSIVA to a fully unimodal initialization baseline and a fully multimodal initialization baseline, and evaluate all three approaches with five distinct subspace structures on synthetic and neuroimaging datasets. We first demonstrate that MSIVA and the unimodal baseline can identify the correct ground-truth subspace structures from the incorrect ones in multiple synthetic datasets, while the multimodal baseline fails at detecting high-dimensional subspace structures. We then show that MSIVA can better capture the latent subspace structure with the minimum loss value in two large multimodal neuroimaging datasets compared to the unimodal baseline. Our results from subsequent per-subspace canonical correlation analysis (CCA) and brain-phenotype modeling demonstrate that the sources from the optimal subspace structure are strongly associated with phenotype measures, including age, sex and schizophrenia-related effects. Our proposed methodology MSIVA can be applied to capture linked and unique biomarkers from multimodal neuroimaging data.

6.
Hum Brain Mapp ; 44(15): 5167-5179, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37605825

ABSTRACT

In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml-jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml-jICA) that allows for a more balanced weight distribution over ml-jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml-jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.


Subject(s)
Functional Neuroimaging , Gray Matter , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Rest , Magnetic Resonance Imaging/methods , Humans , Gray Matter/diagnostic imaging , Male , Female , Middle Aged , Aged , Aged, 80 and over , Hippocampus/diagnostic imaging , Thalamus/diagnostic imaging , Functional Neuroimaging/methods
7.
Sensors (Basel) ; 23(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37300060

ABSTRACT

Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Normal Distribution
8.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909478

ABSTRACT

In this paper we focus on estimating the joint relationship between structural MRI (sMRI) gray matter (GM) and multiple functional MRI (fMRI) intrinsic connectivity networks (ICN) using a novel approach called multi-link joint independent component analysis (ml-jICA). The proposed model offers several improvements over the existing joint independent component analysis (jICA) model. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for Alzheimer's disease versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to gray matter components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.

9.
Sensors (Basel) ; 23(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36991975

ABSTRACT

The identification of homogeneous subgroups of patients with psychiatric disorders can play an important role in achieving personalized medicine and is essential to provide insights for understanding neuropsychological mechanisms of various mental disorders. The functional connectivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric disorders in a clinically useful way is still being studied. In this work, we propose a framework that makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem. The proposed pipeline is designed to analyze a large-scale multi-subject fMRI dataset with a fully data-driven method, a new constrained independent component analysis algorithm based on entropy bound minimization (c-EBM), followed by an eigenspectrum analysis approach. A set of resting-state network (RSN) templates is generated from an independent dataset and used as constraints for c-EBM. The constraints present a foundation for subgroup identification by establishing a connection across the subjects and aligning subject-wise separate ICA analyses. The proposed pipeline was applied to a dataset comprising 464 psychiatric patients and discovered meaningful subgroups. Subjects within the identified subgroups share similar activation patterns in certain brain areas. The identified subgroups show significant group differences in multiple meaningful brain areas including dorsolateral prefrontal cortex and anterior cingulate cortex. Three sets of cognitive test scores were used to verify the identified subgroups, and most of them showed significant differences across subgroups, which provides further confirmation of the identified subgroups. In summary, this work represents an important step forward in using neuroimaging data to characterize mental disorders.


Subject(s)
Magnetic Resonance Imaging , Mental Disorders , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Mental Disorders/diagnostic imaging , Neuroimaging
11.
Neuroinformatics ; 21(1): 115-141, 2023 01.
Article in English | MEDLINE | ID: mdl-36001238

ABSTRACT

Identification of informative signatures from electrophysiological signals is important for understanding brain developmental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these patterns. Tensor factorizations of MEG yield components that encapsulate the data's multidimensional nature, providing parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field (ERF) components that were discriminative of high and low performance groups ([Formula: see text]) and significantly correlated with major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demonstrate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes.


Subject(s)
Brain , Magnetoencephalography , Humans , Child , Magnetoencephalography/methods , Prospective Studies , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Cognition
12.
J Magn Reson Imaging ; 57(5): 1552-1564, 2023 05.
Article in English | MEDLINE | ID: mdl-36165907

ABSTRACT

BACKGROUND: Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown. PURPOSE: To test whether WMT affects PWH brain functional connectivity in resting-state fMRI (rsfMRI). STUDY TYPE: Prospective. POPULATION: A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53 HIV-seronegative controls (SN, ages 49.5 ± 1.6 years, six women). FIELD STRENGTH/SEQUENCE: Axial single-shot gradient-echo echo-planar imaging at 3.0 T was performed at baseline (TL1), at 1-month (TL2), and at 6-months (TL3), after WMT. ASSESSMENT: All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training, n = 58: 28 PWH, 30 SN; nonadaptive training, n = 48: 25 PWH, 23 SN), 25 sessions over 5-8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2. STATISTICAL TESTS: Two-way analyses of variance (ANOVA) on GT metrics and two-sample t-tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set at P < 0.05 after false discovery rate correction. RESULTS: The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = -0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%). DATA CONCLUSION: ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: 1.


Subject(s)
HIV Infections , Memory, Short-Term , Female , Humans , Middle Aged , Brain , Brain Mapping/methods , Cognitive Training , Magnetic Resonance Imaging/methods , Prospective Studies , Case-Control Studies
14.
Sensors (Basel) ; 22(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36236515

ABSTRACT

The hypothesis that the central nervous system (CNS) makes use of synergies or movement primitives in achieving simple to complex movements has inspired the investigation of different types of synergies. Kinematic and muscle synergies have been extensively studied in the literature, but only a few studies have compared and combined both types of synergies during the control and coordination of the human hand. In this paper, synergies were extracted first independently (called kinematic and muscle synergies) and then combined through data fusion (called musculoskeletal synergies) from 26 activities of daily living in 22 individuals using principal component analysis (PCA) and independent component analysis (ICA). By a weighted linear combination of musculoskeletal synergies, the recorded kinematics and the recorded muscle activities were reconstructed. The performances of musculoskeletal synergies in reconstructing the movements were compared to the synergies reported previously in the literature by us and others. The results indicate that the musculoskeletal synergies performed better than the synergies extracted without fusion. We attribute this improvement in performance to the musculoskeletal synergies that were generated on the basis of the cross-information between muscle and kinematic activities. Moreover, the synergies extracted using ICA performed better than the synergies extracted using PCA. These musculoskeletal synergies can possibly improve the capabilities of the current methodologies used to control high dimensional prosthetics and exoskeletons.


Subject(s)
Activities of Daily Living , Hand Strength , Biomechanical Phenomena , Hand/physiology , Hand Strength/physiology , Humans , Movement/physiology , Muscle, Skeletal
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4631-4634, 2022 07.
Article in English | MEDLINE | ID: mdl-36086208

ABSTRACT

Functional connectivity is a widely used measure for finding the relationships between functional entities of the brain. Recently, more focus has been put on the methods that aim to estimate these relationships in a time-resolved fashion. However, the similarities and differences between these methods are not always clear and can result in unfair and incorrect comparisons. Here, we present a framework that provides a unified, systematic view for some of the more well-known methods. Using the proposed unified framework, we explain different methodologies using a unified language and show how they are similar and different conceptually. We give examples how this framework exposes important assumptions made by various methods, which can help clarify differences in results and facilitate reproducibility. We also show how such a framework will enable us to develop methods that improve upon previous methods.


Subject(s)
Brain , Reproducibility of Results
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3649-3652, 2022 07.
Article in English | MEDLINE | ID: mdl-36086381

ABSTRACT

Investigations on how the central nervous system (CNS) effortlessly conducts complex hand movements have led to an extensive study of synergies or movement primitives. Of the different types of hand synergies, kinematic and muscle synergies have been widely studied in literature, but only a few studies have fused both. In this paper kinematic and muscle activities recorded from the activities of daily living were first fused and then dimensionally reduced through principal component analysis (PCA). By using these principal components or musculoskeletal synergies in a weighted linear combination, the recorded kinematics and muscle activities were reconstructed. The performance of these musculoskeletal synergies in reconstructing the movements was compared to the kinematic and muscle synergies reported previously in the literature by us and others. The results from these findings indicate that musculoskeletal synergies perform better than the synergies extracted without fusion. These newly demonstrated musculoskeletal synergies might improve neural control of robotics, prosthetics and exoskeletons. Clinical Relevance- In this paper, musculoskeletal synergies were extracted from the fusion of kinematic and muscle activities recorded from the activities of daily living. These newly demonstrated musculoskeletal synergies might enhance our understanding of neural control of robotics, prosthetics and exoskeletons.


Subject(s)
Activities of Daily Living , Hand Strength , Biomechanical Phenomena , Hand Strength/physiology , Humans , Movement/physiology , Muscle, Skeletal/physiology
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3203-3206, 2022 07.
Article in English | MEDLINE | ID: mdl-36086426

ABSTRACT

Hand prehension requires a highly coordinated control of contact forces. The high dimensional sensorimotor system of the human hand although operates at ease, poses several challenges when replicated for prosthetic control. This study investigates how the dynamical synergies, coordinated spatial patterns of contact forces, contribute to the contact forces in a grasp, and whether the dynamical synergies could potentially serve as candidates for feedforward and feedback mechanisms. Ten right-handed subjects were recruited to grasp and hold mass-varied objects. The contact forces during this multidigit prehension were recorded using an instrumented grip glove. The dynamical synergies were derived using principal component analysis (PCA). The contact force patterns during the grasps were reconstructed using the first few synergies. The significance of the dynamical synergies and the current challenges and possible applications of the dynamical synergies were discussed along with the integration of the dynamical synergies into prosthetics and exoskeletons that can possibly enable near-natural control. This research presents dynamical synergies observed in contact forces during hand grasps. These dynamical synergies could help in improving feedforward force control and sensory feedback in hand prosthetics and exoskeletons.


Subject(s)
Hand Strength , Hand , Biomechanical Phenomena , Feedback, Sensory , Humans , Principal Component Analysis
18.
Sensors (Basel) ; 22(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35891029

ABSTRACT

Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed.


Subject(s)
Activities of Daily Living , Brain-Computer Interfaces , Biomechanical Phenomena , Electroencephalography/methods , Hand , Hand Strength , Humans , Movement
19.
Sensors (Basel) ; 22(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684800

ABSTRACT

Hand prehension requires highly coordinated control of contact forces. The high-dimensional sensorimotor system of the human hand operates at ease, but poses several challenges when replicated in artificial hands. This paper investigates how the dynamical synergies, coordinated spatiotemporal patterns of contact forces, contribute to the hand grasp, and whether they could potentially capture the force primitives in a low-dimensional space. Ten right-handed subjects were recruited to grasp and hold mass-varied objects. The contact forces during this multidigit prehension were recorded using an instrumented grip glove. The dynamical synergies were derived using principal component analysis (PCA). The contact force patterns during the grasps were reconstructed using the first few synergies. The significance of the dynamical synergies, the influence of load forces and task configurations on the synergies were explained. This study also discussed the contribution of biomechanical constraints on the first few synergies and the current challenges and possible applications of the dynamical synergies in the design and control of exoskeletons. The integration of the dynamical synergies into exoskeletons will be realized in the near future.


Subject(s)
Hand Strength , Hand , Biomechanical Phenomena , Fingers , Humans , Movement , Principal Component Analysis
20.
Front Neurosci ; 16: 861402, 2022.
Article in English | MEDLINE | ID: mdl-35546891

ABSTRACT

Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time, and voxels, revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change.

SELECTION OF CITATIONS
SEARCH DETAIL
...