Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088835

ABSTRACT

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Subject(s)
DNA Mismatch Repair/physiology , Endonucleases/metabolism , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Endonucleases/chemistry , Meiosis , Models, Molecular , MutL Protein Homolog 1/chemistry , MutL Protein Homolog 1/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Nucleic Acids Res ; 49(8): 4522-4533, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33823531

ABSTRACT

Meiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs. Conversion tracts are shorter in meiosis than in mitotically dividing cells. This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLß heterodimer, to meiotic recombination intermediates. The molecular actors inhibited by this complex are elusive. The Pif1 DNA helicase is known to stimulate DNA polymerase delta (Pol δ) -mediated DNA synthesis from D-loops, allowing long synthesis required for break-induced replication. We show that Pif1 is also recruited genome wide to meiotic DNA double-strand break (DSB) sites. We further show that Pif1, through its interaction with PCNA, is required for the long gene conversions observed in the absence of MutLß recruitment to recombination sites. In vivo, Mer3 interacts with the PCNA clamp loader RFC, and in vitro, Mer3-MutLß ensemble inhibits Pif1-stimulated D-loop extension by Pol δ and RFC-PCNA. Mechanistically, our results suggest that Mer3-MutLß may compete with Pif1 for binding to RFC-PCNA. Taken together, our data show that Pif1's activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLß ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis.


Subject(s)
DNA Helicases/metabolism , Gene Conversion , Homologous Recombination , Meiosis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin Immunoprecipitation Sequencing , DNA Breaks, Double-Stranded , DNA Helicases/genetics , High-Throughput Nucleotide Sequencing , Mass Spectrometry , MutL Proteins/genetics , MutL Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Recombinant Proteins , Replication Protein C/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199619

ABSTRACT

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Subject(s)
Cell Cycle Proteins/metabolism , Crossing Over, Genetic , Exodeoxyribonucleases/metabolism , Meiosis/genetics , MutL Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/genetics , Chromosomes, Fungal , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombination, Genetic
5.
Nature ; 586(7830): 618-622, 2020 10.
Article in English | MEDLINE | ID: mdl-32814904

ABSTRACT

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Subject(s)
Crossing Over, Genetic , Endonucleases/metabolism , Meiosis , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Cell Cycle Proteins/metabolism , Chromosomes, Human/genetics , Conserved Sequence , DNA/metabolism , DNA Cleavage , DNA Repair Enzymes/metabolism , DNA, Cruciform/metabolism , Exodeoxyribonucleases/metabolism , Humans , MutL Protein Homolog 1/chemistry , MutL Proteins/chemistry , MutS Proteins/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Replication Protein C/metabolism
6.
PLoS Genet ; 14(2): e1007223, 2018 02.
Article in English | MEDLINE | ID: mdl-29444071

ABSTRACT

Histone H3K4 methylation is a feature of meiotic recombination hotspots shared by many organisms including plants and mammals. Meiotic recombination is initiated by programmed double-strand break (DSB) formation that in budding yeast takes place in gene promoters and is promoted by histone H3K4 di/trimethylation. This histone modification is recognized by Spp1, a PHD finger containing protein that belongs to the conserved histone H3K4 methyltransferase Set1 complex. During meiosis, Spp1 binds H3K4me3 and interacts with a DSB protein, Mer2, to promote DSB formation close to gene promoters. How Set1 complex- and Mer2- related functions of Spp1 are connected is not clear. Here, combining genome-wide localization analyses, biochemical approaches and the use of separation of function mutants, we show that Spp1 is present within two distinct complexes in meiotic cells, the Set1 and the Mer2 complexes. Disrupting the Spp1-Set1 interaction mildly decreases H3K4me3 levels and does not affect meiotic recombination initiation. Conversely, the Spp1-Mer2 interaction is required for normal meiotic recombination initiation, but dispensable for Set1 complex-mediated histone H3K4 methylation. Finally, we provide evidence that Spp1 preserves normal H3K4me3 levels independently of the Set1 complex. We propose a model where Spp1 works in three ways to promote recombination initiation: first by depositing histone H3K4 methylation (Set1 complex), next by "reading" and protecting histone H3K4 methylation, and finally by making the link with the chromosome axis (Mer2-Spp1 complex). This work deciphers the precise roles of Spp1 in meiotic recombination and opens perspectives to study its functions in other organisms where H3K4me3 is also present at recombination hotspots.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/physiology , Histone-Lysine N-Methyltransferase/metabolism , Meiosis , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , DNA-Binding Proteins/metabolism , Histones/metabolism , Meiosis/genetics , Methylation , Organisms, Genetically Modified , PHD Zinc Fingers , Protein Processing, Post-Translational , Saccharomyces cerevisiae
7.
Elife ; 62017 01 04.
Article in English | MEDLINE | ID: mdl-28051769

ABSTRACT

Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLß complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLß preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLß is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations.


Subject(s)
DNA Helicases/metabolism , Gene Conversion , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Chromosomes, Fungal/metabolism
8.
Nucleic Acids Res ; 42(15): 10005-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25013175

ABSTRACT

The DEAD-box helicase Ded1 is an essential yeast protein that is closely related to mammalian DDX3 and to other DEAD-box proteins involved in developmental and cell cycle regulation. Ded1 is considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We used IgG pull-down experiments, mass spectrometry analyses, genetic experiments, sucrose gradients, in situ localizations and enzymatic assays to show that Ded1 is a cap-associated protein that actively shuttles between the cytoplasm and the nucleus. NanoLC-MS/MS analyses of purified complexes show that Ded1 is present in both nuclear and cytoplasmic mRNPs. Ded1 physically interacts with purified components of the nuclear CBC and the cytoplasmic eIF4F complexes, and its enzymatic activity is stimulated by these factors. In addition, we show that Ded1 is genetically linked to these factors. Ded1 comigrates with these proteins on sucrose gradients, but treatment with rapamycin does not appreciably alter the distribution of Ded1; thus, most of the Ded1 is in stable mRNP complexes. We conclude that Ded1 is an mRNP cofactor of the cap complex that may function to remodel the different mRNPs and thereby regulate the expression of the mRNAs.


Subject(s)
Cell Nucleus/enzymology , Cytoplasm/enzymology , DEAD-box RNA Helicases/metabolism , RNA Caps/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Active Transport, Cell Nucleus , Adenosine Triphosphatases/metabolism , DEAD-box RNA Helicases/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Protein Biosynthesis , Ribonucleoproteins/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
PLoS One ; 7(5): e38138, 2012.
Article in English | MEDLINE | ID: mdl-22693589

ABSTRACT

Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction.


Subject(s)
Mitochondria/enzymology , Podospora/cytology , Podospora/enzymology , Protease La/chemistry , Protease La/metabolism , Alleles , Amino Acid Sequence , Gene Deletion , Molecular Sequence Data , Phenotype , Podospora/genetics , Podospora/physiology , Protease La/deficiency , Protease La/genetics , Protein Structure, Tertiary , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...