Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Public Health Pract (Oxf) ; 8: 100525, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39050010

ABSTRACT

Background: Hong Kong enforced stringent travel restrictions during the COVID-19 pandemic. Understanding the characteristics of imported COVID-19 cases is important for establishing evidence-based control measures. Methods: Retrospective cohort study summarising the characteristics of imported cases detected in Hong Kong between 13 November 2020 and 31 January 2022, when compulsory quarantine was implemented. Findings: A total of 2269 imported COVID-19 cases aged 0-85 years were identified, of which 48.6 % detected on arrival. A shorter median delay from arrival to isolation was observed in Delta and Omicron cases (3 days) than in ancestral strain and other variants cases (12 days; p < 0.001). Lower Ct values at isolation were observed in Omicron cases than in ancestral strain or other variants cases. No Omicron cases were detected beyond 14 days after arrival. Cases detected after 14 days of quarantine (n=58, 2.6 %) were more likely asymptomatic at isolation and had higher Ct value during isolation, some of them indicating re-positivity or post-arrival infections. Conclusions: Testing inbound travellers at arrival and during quarantine can detect imported cases early, but may not prevent all COVID-19 introductions into the community. Public health measures should be adapted in response to the emergence of SARS-CoV-2 variants based on evidence from ongoing surveillance.

2.
Am J Epidemiol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013785

ABSTRACT

The serial interval distribution is used to approximate the generation time distribution, an essential parameter to infer the transmissibility (${R}_t$) of an epidemic. However, serial interval distributions may change as an epidemic progresses. We examined detailed contact tracing data on laboratory-confirmed cases of COVID-19 in Hong Kong during the five waves from January 2020 to July 2022. We reconstructed the transmission pairs and estimated time-varying effective serial interval distributions and factors associated with longer or shorter intervals. Finally, we assessed the biases in estimating transmissibility using constant serial interval distributions. We found clear temporal changes in mean serial interval estimates within each epidemic wave studied and across waves, with mean serial intervals ranged from 5.5 days (95% CrI: 4.4, 6.6) to 2.7 (95% CrI: 2.2, 3.2) days. The mean serial intervals shortened or lengthened over time, which were found to be closely associated with the temporal variation in COVID-19 case profiles and public health and social measures and could lead to the biases in predicting ${R}_t$. Accounting for the impact of these factors, the time-varying quantification of serial interval distributions could lead to improved estimation of ${R}_t$, and provide additional insights into the impact of public health measures on transmission.

3.
Nat Commun ; 14(1): 2422, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105966

ABSTRACT

Hong Kong experienced a surge of Omicron BA.2 infections in early 2022, resulting in one of the highest per-capita death rates of COVID-19. The outbreak occurred in a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures (PHSMs). By analyzing genome sequences and epidemiological data, we reconstructed the epidemic trajectory of BA.2 wave and found that the initial BA.2 community transmission emerged from cross-infection within hotel quarantine. The rapid implementation of PHSMs suppressed early epidemic growth but the effective reproduction number (Re) increased again during the Spring festival in early February and remained around 1 until early April. Independent estimates of point prevalence and incidence using phylodynamics also showed extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. Discordant inferences based on genomic and epidemiological data underscore the need for research to improve near real-time epidemic growth estimates by combining multiple disparate data sources to better inform outbreak response policy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Hong Kong/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks , Basic Reproduction Number
4.
J Infect Dis ; 228(4): 426-430, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37094371

ABSTRACT

We described the frequency of residential case clusters and the efficiency of compulsory testing in identifying cases using buildings targeted in compulsory testing and locally infected coronavirus disease 2019 (COVID-19) cases matched by residence in Hong Kong. Most of the buildings (4246 of 7688, 55.2%) with COVID-19 cases identified had only 1 reported case, and 13% of the daily reported cases were detected through compulsory testing. Compulsory testing notices could be essential in attempting to eliminate infections ("zero COVID") and have an impact early in an epidemic, but they appear to be relatively inefficient in response to sustained community transmission.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Hong Kong/epidemiology , SARS-CoV-2
5.
Epidemiology ; 34(2): 201-205, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36722802

ABSTRACT

BACKGROUND: The time-varying reproduction number, Rt, is commonly used to monitor the transmissibility of an infectious disease during an epidemic, but standard methods for estimating Rt seldom account for the impact of overdispersion on transmission. METHODS: We developed a negative binomial framework to estimate Rt and a time-varying dispersion parameter (kt). We applied the framework to COVID-19 incidence data in Hong Kong in 2020 and 2021. We conducted a simulation study to compare the performance of our model with the conventional Poisson-based approach. RESULTS: Our framework estimated an Rt peaking around 4 (95% credible interval = 3.13, 4.30), similar to that from the Poisson approach but with a better model fit. Our approach further estimated kt <0.5 at the start of both waves, indicating appreciable heterogeneity in transmission. We also found that kt decreased sharply to around 0.4 when a large cluster of infections occurred. CONCLUSIONS: Our proposed approach can contribute to the estimation of Rt and monitoring of the time-varying dispersion parameters to quantify the role of superspreading.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Computer Simulation , Hong Kong/epidemiology , Reproduction
6.
Lancet Reg Health West Pac ; 33: 100678, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36643735

ABSTRACT

Background: On-arrival quarantine has been one of the primary measures to prevent the introduction of SARS-CoV-2 into Hong Kong since the start of the pandemic. Most on-arrival quarantines have been done in hotels, with the duration of quarantine and testing frequency during quarantine modified over time along with other pandemic control measures. However, hotels are not designed with infection control in mind. We aimed to systematically study the potential risk of acquisition of SARS-CoV-2 infection among individuals undergoing hotel quarantine. Methods: We examined data on each laboratory-confirmed COVID-19 case identified in on-arrival quarantine in a hotel in Hong Kong between 1 May 2020 and 31 January 2022. We sequenced the whole genomes of viruses from cases that overlapped with other confirmed cases in terms of the hotel of stay, date of arrival and date of testing positive. By combining multiple sources of evidence, we identify probable and plausible transmission events and calculate the overall risk of transmission. Findings: Among 221 imported cases that overlapped with other cases detected during hotel quarantine with available sequence data, phylogenomic analyses identified five probable and two plausible clusters of within-hotel transmission. Only two of these clusters were recognised at the time. Including other clusters reported in Hong Kong, we estimate that 8-11 per 1000 cases identified in hotel quarantine may be infected by another unlinked case during quarantine, or 2-3 per 100,000 overseas arrivals. Interpretation: We have identified additional undetected occurrences of COVID-19 transmission within hotel quarantine in Hong Kong. Although hotels provide suboptimal infection control as improvised quarantine facilities, the risk of contracting infection whilst in quarantine is low. However, these unlikely events could have high consequences by allowing the virus to spread into immunologically naïve communities. Additional vigilance should be taken in the absence of improved controls to identify such events. If on-arrival quarantine is expected to be used for a long time, quarantine facilities could be purpose-built to minimise the risk of transmission. Funding: Health and Medical Research Fund, Hong Kong.

7.
Virus Evol ; 8(2): veac062, 2022.
Article in English | MEDLINE | ID: mdl-35919872

ABSTRACT

China experienced a resurgence of seasonal influenza activity throughout 2021 despite intermittent control measures and prolonged international border closure. We show genomic evidence for multiple A(H3N2), A(H1N1), and B/Victoria transmission lineages circulating over 3 years, with the 2021 resurgence mainly driven by two B/Victoria clades. Phylodynamic analysis revealed unsampled ancestry prior to widespread outbreaks in December 2020, showing that influenza lineages can circulate cryptically under non-pharmaceutical interventions enacted against COVID-19. Novel haemagglutinin gene mutations and altered age profiles of infected individuals were observed, and Jiangxi province was identified as a major source for nationwide outbreaks. Following major holiday periods, fluctuations in the effective reproduction number were observed, underscoring the importance of influenza vaccination prior to holiday periods or travel. Extensive heterogeneity in seasonal influenza circulation patterns in China determined by historical strain circulation indicates that a better understanding of demographic patterns is needed for improving effective controls.

8.
Transbound Emerg Dis ; 69(5): e3007-e3014, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35799321

ABSTRACT

Superspreading, or overdispersion in transmission, is a feature of SARS-CoV-2 transmission which results in surging epidemics and large clusters of infection. The dispersion parameter is a statistical parameter used to characterize and quantify heterogeneity. In the context of measuring transmissibility, it is analogous to measures of superspreading potential among populations by assuming that collective offspring distribution follows a negative-binomial distribution. We conducted a systematic review and meta-analysis on globally reported dispersion parameters of SARS-CoV-2 infection. All searches were carried out on 10 September 2021 in PubMed for articles published from 1 January 2020 to 10 September 2021. Multiple estimates of the dispersion parameter have been published for 17 studies, which could be related to where and when the data were obtained, in 8 countries (e.g. China, the United States, India, Indonesia, Israel, Japan, New Zealand and Singapore). High heterogeneity was reported among the included studies. The mean estimates of dispersion parameters range from 0.06 to 2.97 over eight countries, the pooled estimate was 0.55 (95% CI: 0.30, 0.79), with changing means over countries and decreasing slightly with the increasing reproduction number. The expected proportion of cases accounting for 80% of all transmissions is 19% (95% CrI: 7, 34) globally. The study location and method were found to be important drivers for diversity in estimates of dispersion parameters. While under high potential of superspreading, larger outbreaks could still occur with the import of the COVID-19 virus by traveling even when an epidemic seems to be under control.


Subject(s)
COVID-19 , Epidemics , Animals , COVID-19/epidemiology , COVID-19/veterinary , China/epidemiology , India , SARS-CoV-2
9.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35458551

ABSTRACT

COVID-19 remains a persistent threat, especially with the predominant Omicron variant emerging in early 2022, presenting with high transmissibility, immune escape, and waning. There is a need to rapidly ramp up global vaccine coverage while enhancing public health and social measures. Timely and reliable estimation of the reproduction number throughout a pandemic is critical for assessing the impact of mitigation efforts and the potential need to adjust for control measures. We conducted a systematic review on the reproduction numbers of the Omicron variant and gave the pooled estimates. We identified six studies by searching PubMed, Embase, Web of Science, and Google Scholar for articles published between 1 January 2020 and 6 March 2022. We estimate that the effective reproduction number ranges from 2.43 to 5.11, with a pooled estimate of 4.20 (95% CI: 2.05, 6.35). The Omicron variant has an effective reproduction number which is triple (2.71 (95% CI: 1.86, 3.56)) that of the Delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Public Health , Reproduction , SARS-CoV-2/genetics
10.
Nat Commun ; 13(1): 1155, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241662

ABSTRACT

Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text]) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics.


Subject(s)
COVID-19/transmission , Epidemiological Models , SARS-CoV-2 , Viral Load , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Computer Simulation , Computer Systems , Epidemics , Hong Kong/epidemiology , Humans , Models, Statistical , Pandemics , Viral Load/statistics & numerical data
11.
Nat Commun ; 13(1): 736, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136039

ABSTRACT

Hong Kong employed a strategy of intermittent public health and social measures alongside increasingly stringent travel regulations to eliminate domestic SARS-CoV-2 transmission. By analyzing 1899 genome sequences (>18% of confirmed cases) from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases. Community outbreaks were caused by novel introductions rather than a resurgence of circulating strains. Thus, local outbreak prevention requires strong border control and community surveillance, especially during periods of less stringent social restriction. Non-adherence to prolonged preventative measures may explain sustained local transmission observed during wave four in late 2020 and early 2021. We also found that, due to a tight transmission bottleneck, transmission of low-frequency single nucleotide variants between hosts is rare.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , Genomics , Hong Kong/epidemiology , Humans , Public Health , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Travel
12.
Vaccine ; 40(17): 2478-2483, 2022 04 14.
Article in English | MEDLINE | ID: mdl-34865873

ABSTRACT

BACKGROUND: In December 2019, we ran Pacific Eclipse, a pandemic tabletop exercise using smallpox originating in Fiji as a case study. Pacific Eclipse brought together international stakeholders from health, defence, law enforcement, emergency management and a range of other organisations. AIM: To review potential gaps in preparedness and identify modifiable factors which could prevent a pandemic or mitigate the impact of a pandemic. METHODS: Pacific Eclipse was held on December 9-10 in Washington DC, Phoenix and Honolulu simultaneously. The scenario began in Fiji and becomes a pandemic. Mathematical modelling of smallpox transmission was used to simulate the epidemic under different conditions and to test the effect of interventions. Live polling, using Poll Everywhere software that participants downloaded onto their smart phones, was used to gather participant decisions as the scenario unfolded. Stakeholders from state and federal government and non-government organisations from The United States, The United Kingdom, Australia, New Zealand, Canada, as well as industry and non-government organisations attended. RESULTS: The scenario progressed in three phases and participants were able to make decisions during each phase using live polling. The polling showed very diverse and sometimes conflicting decision making. Factors influential to pandemic severity were identified and categorised as modifiable or unmodifiable. A series of recommendations were made on the modifiable determinants of pandemic severity and how these can be incorporated into pandemic planning. These included preventing an attack through intelligence, law enforcement and legislation, improved speed of diagnosis, speed and completeness of case finding and case isolation, speed and security of vaccination response (including stockpiling), speed and completeness of contact tracing, protecting critical infrastructure and business continuity, non-pharmaceutical interventions (social distancing, PPE, border control) and protecting first responders. DISCUSSION: Pacific Eclipse illustrated the impact of a pandemic of smallpox under different response scenarios, which were validated to some extent by the COVID-19 pandemic. The framework developed from the scenario draws out modifiable determinants of pandemic severity which can inform pandemic planning for the ongoing COVID-19 pandemic and for future pandemics.


Subject(s)
COVID-19 , Smallpox , Variola virus , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , Pandemics/prevention & control , Smallpox/epidemiology , Smallpox/prevention & control , United States
13.
Clin Infect Dis ; 75(1): e216-e223, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34718464

ABSTRACT

BACKGROUND: Testing of an entire community has been used as an approach to control coronavirus disease 2019 (COVID-19). In Hong Kong, a universal community testing program (UCTP) was implemented at the fadeout phase of a community epidemic in July to September 2020. We described the utility of the UCTP in finding unrecognized infections and analyzed data from the UCTP and other sources to characterize transmission dynamics. METHODS: We described the characteristics of people participating in the UCTP and compared the clinical and epidemiological characteristics of COVID-19 cases detected by the UCTP versus those detected by clinical diagnosis and public health surveillance (CDPHS). We developed a Bayesian model to estimate the age-specific incidence of infection and the proportion of cases detected by CDPHS. RESULTS: In total, 1.77 million people, 24% of the Hong Kong population, participated in the UCTP from 1 to 14 September 2020. The UCTP identified 32 new infections (1.8 per 100000 samples tested), consisting of 29% of all local cases reported during the two-week UCTP period. Compared with the CDPHS, the UCTP detected a higher proportion of sporadic cases (62% vs 27%, P<.01) and identified 6 (out of 18) additional clusters during that period. We estimated that 27% (95% credible interval: 22%, 34%) of all infections were detected by the CDPHS in the third wave. CONCLUSIONS: We reported empirical evidence of the utility of population-wide COVID-19 testing in detecting unrecognized infections and clusters. Around three quarters of infections have not been identified through existing surveillance approaches including contact tracing.


Subject(s)
COVID-19 , Nucleic Acids , Bayes Theorem , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Hong Kong/epidemiology , Humans , SARS-CoV-2
14.
J Travel Med ; 28(8)2021 12 29.
Article in English | MEDLINE | ID: mdl-34542623

ABSTRACT

BACKGROUND: A large cluster of 59 cases were linked to a single flight with 146 passengers from New Delhi to Hong Kong in April 2021. This outbreak coincided with early reports of exponential pandemic growth in New Delhi, which reached a peak of > 400 000 newly confirmed cases on 7 May 2021. METHODS: Epidemiological information including date of symptom onset, date of positive-sample detection and travel and contact history for individual cases from this flight were collected. Whole genome sequencing was performed, and sequences were classified based on the dynamic Pango nomenclature system. Maximum-likelihood phylogenetic analysis compared sequences from this flight alongside other cases imported from India to Hong Kong on 26 flights between June 2020 and April 2021, as well as sequences from India or associated with India-related travel from February to April 2021 and 1217 reference sequences. RESULTS: Sequence analysis identified six lineages of SARS-CoV-2 belonging to two variants of concern (Alpha and Delta) and one variant of public health interest (Kappa) involved in this outbreak. Phylogenetic analysis confirmed at least three independent sub-lineages of Alpha with limited onward transmission, a superspreading event comprising 37 cases of Kappa and transmission of Delta to only one passenger. Additional analysis of another 26 flights from India to Hong Kong confirmed widespread circulation of all three variants in India since early March 2021. CONCLUSIONS: The broad spectrum of disease severity and long incubation period of SARS-CoV-2 pose a challenge for surveillance and control. As illustrated by this particular outbreak, opportunistic infections of SARS-CoV-2 can occur irrespective of variant lineage, and requiring a nucleic acid test within 72 hours of departure may be insufficient to prevent importation or in-flight transmission.


Subject(s)
Air Travel , COVID-19 , Travel-Related Illness , COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks , Hong Kong , Humans , India , Phylogeny
15.
medRxiv ; 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34189537

ABSTRACT

Hong Kong utilized an elimination strategy with intermittent use of public health and social measures and increasingly stringent travel regulations to control SARS-CoV-2 transmission. By analyzing >1700 genome sequences representing 17% of confirmed cases from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases, two of which circulated cryptically for weeks while less stringent measures were in place. We found that SARS-CoV-2 within-host diversity was most similar among transmission pairs and epidemiological clusters due to a strong transmission bottleneck through which similar genetic background generates similar within-host diversity. ONE SENTENCE SUMMARY: Out of the 170 detected introductions of SARS-CoV-2 in Hong Kong during 2020, three introductions caused 90% of community cases.

16.
Int J Infect Dis ; 110: 69-74, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174431

ABSTRACT

OBJECTIVES: Rhinoviruses (RV) represent the most common aetiological agent of all acute respiratory tract infections across all age groups and a significant burden of disease among children. Recent studies have shown that RV-A and RV-C species are associated with increased disease severity. In order to better understand the potential associations between RV species and clinical features among paediatric cases, this study aimed to integrate genetic and epidemiological data using Bayesian phylogenetic methods. METHODS: Potential associations between RV species and subtypes, and clinical disease severity using a matched dataset of 52 RV isolates sampled from children (< 18 years) in Sydney, Australia, between 2006 and 2009 were uncovered using epidemiological and phylogenetic methods. RESULTS: It was found that RV-C was significantly more likely to be isolated from paediatric cases aged < 2 years compared with RV-A, although no significant differences in recorded symptoms were observed. Significant phylogenetic-trait associations between age and the VP4/VP2 capsid protein phylogeny suggest that age-specific variations in infectivity among subtypes may may be possible. CONCLUSION: This study adds to the growing body of epidemiological evidence concerning RV. Improving surveillance and testing for RV, including routine whole genome sequencing, may improve understanding of the varied disease outcomes of RV species and subtypes. Future studies could aim to identify specific genetic markers associated with age-specific infectivity of RV, which could inform treatment practices and public health surveillance of RV.


Subject(s)
Picornaviridae Infections , Respiratory Tract Infections , Bayes Theorem , Child , Humans , Molecular Epidemiology , Phylogeny , Picornaviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics
17.
J Infect ; 83(1): 92-95, 2021 07.
Article in English | MEDLINE | ID: mdl-33895227

ABSTRACT

OBJECTIVES: mask-wearing outside the home has been almost universal in Hong Kong since late January 2020 with very high compliance. Nevertheless, community spread of COVID-19 has still occurred. We aimed to assess the settings where COVID-19 transmission occurred and determine the fraction of transmission events that occurred in settings where masks are not usually worn. METHODS: we reviewed detailed information provided by the Hong Kong Department of Health on local COVID-19 cases diagnosed up to 30 September 2020 to determine the most likely settings in which transmission occurred. We classified them in probably mask-on or mask-of and compared the prevalence of asymptomatic infections in these settings. RESULTS: among the 2425 cases (65.3%, 2425/3711) with information on transmission setting, 77.6% of the transmission occurred in household and social settings where face masks are not usually worn. Infections that occurred in mask-on settings were more likely to be asymptomatic (adjusted odds ratio 1.33; 95% confidence interval: 1.04, 1.68). CONCLUSIONS: we conclude that universal mask-wearing can reduce transmission, but transmission can continue to occur in settings where face masks are not usually worn. The higher proportion of asymptomatic cases in mask-on settings could be related to a milder disease presentation or earlier case detection.


Subject(s)
COVID-19 , Hong Kong/epidemiology , Humans , Masks , SARS-CoV-2
18.
Clin Infect Dis ; 73(12): 2298-2305, 2021 12 16.
Article in English | MEDLINE | ID: mdl-33406238

ABSTRACT

BACKGROUND: Disparities were marked in previous pandemics, usually with higher attack rates reported for those in lower socioeconomic positions and for ethnic minorities. METHODS: We examined characteristics of laboratory-confirmed coronavirus disease 2019 (COVID-19) cases in Hong Kong, assessed associations between incidence and population-level characteristics at the level of small geographic areas, and evaluated relations between socioeconomics and work-from-home (WFH) arrangements. RESULTS: The largest source of COVID-19 importations switched from students studying overseas in the second wave to foreign domestic helpers in the third. The local cases were mostly individuals not in formal employment (retirees and homemakers) and production workers who were unable to WFH. For every 10% increase in the proportion of population employed as executives or professionals in a given geographic region, there was an 84% (95% confidence interval [CI], 1-97%) reduction in the incidence of COVID-19 during the third wave. In contrast, in the first 2 waves, the same was associated with 3.69 times (95% CI, 1.02-13.33) higher incidence. Executives and professionals were more likely to implement WFH and experienced frequent changes in WFH practice compared with production workers. CONCLUSIONS: Consistent findings on the reversed socioeconomic patterning of COVID-19 burden between infection waves in Hong Kong in both individual- and population-level analyses indicated that risks of infections may be related to occupations involving high exposure frequency and WFH flexibility. Contextual determinants should be taken into account in policy planning aiming at mitigating such disparities.


Subject(s)
COVID-19 , Ethnic and Racial Minorities , Hong Kong/epidemiology , Humans , Pandemics , SARS-CoV-2
19.
Nat Med ; 26(11): 1714-1719, 2020 11.
Article in English | MEDLINE | ID: mdl-32943787

ABSTRACT

Superspreading events (SSEs) have characterized previous epidemics of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections1-6. For SARS-CoV-2, the degree to which SSEs are involved in transmission remains unclear, but there is growing evidence that SSEs might be a typical feature of COVID-197,8. Using contact tracing data from 1,038 SARS-CoV-2 cases confirmed between 23 January and 28 April 2020 in Hong Kong, we identified and characterized all local clusters of infection. We identified 4-7 SSEs across 51 clusters (n = 309 cases) and estimated that 19% (95% confidence interval, 15-24%) of cases seeded 80% of all local transmission. Transmission in social settings was associated with more secondary cases than households when controlling for age (P = 0.002). Decreasing the delay between symptom onset and case confirmation did not result in fewer secondary cases (P = 0.98), although the odds that an individual being quarantined as a contact interrupted transmission was 14.4 (95% CI, 1.9-107.2). Public health authorities should focus on rapidly tracing and quarantining contacts, along with implementing restrictions targeting social settings to reduce the risk of SSEs and suppress SARS-CoV-2 transmission.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Carrier State/epidemiology , Cluster Analysis , Contact Tracing , Female , Health Policy , Hong Kong/epidemiology , Humans , Male , Models, Theoretical , Pandemics , Patient Isolation/legislation & jurisprudence , Public Health/legislation & jurisprudence , Quarantine/legislation & jurisprudence , SARS-CoV-2/physiology , Travel-Related Illness
20.
J Paediatr Child Health ; 56(10): 1561-1564, 2020 10.
Article in English | MEDLINE | ID: mdl-32729192

ABSTRACT

AIM: To compare the clinical features of Middle East respiratory syndrome coronavirus (MERS-CoV) infection between paediatric and adult cases. METHODS: Using multiple public data sources, we created an enhanced open-source surveillance dataset of all MERS-CoV cases between 20 September 2012 and 31 December 2018 in Saudi Arabia including available risk factor data. RESULTS: Of the 1791 cases of MERS-CoV identified, 30 cases (1.7%) were aged under 18 years and 1725 cases (96.3%) were aged 18 years and over. Three paediatric cases were fatal, aged 0, 2 and 15 years. The odds of asymptomatic MERS-CoV infection among cases under 18 years (n = 10/23; 44%) was significantly higher (odds ratio (OR) = 4.98; 95% confidence interval (CI): 2.15-11.51; P = 0.001) compared to adults (n = 199/1487; 13%). The odds of hospitalisation were significantly lower (OR = 0.17; 95% CI: 0.08-0.39; P < 0.001) among cases under 18 years (n = 12/24; 50%) compared to adults (n = 1231/1443; 85%). Children were more likely to have a known source of exposure compared to adults (OR = 2.68; 95% CI: 1.29-5.56; P = 0.008). CONCLUSIONS: Clinically severe illness is less common in children, although death can occur, and the proportion of paediatric cases (1.7%) is similar to that reported for COVID-19. Age-specific differences in the clinical presentation of MERS-CoV cases could have implications for transmission for other betacoronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Children may be at risk within the household with an infected adult. More studies are required on the role of children in transmission of betacoronaviruses.


Subject(s)
Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus , Adolescent , Adult , Age Distribution , Asymptomatic Infections/epidemiology , COVID-19 , Child , Child, Preschool , Communicable Diseases, Emerging/epidemiology , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Female , Humans , Infant , Male , Pandemics , Pneumonia, Viral/epidemiology , Saudi Arabia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...