Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(9): 2448-2456, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28806050

ABSTRACT

Though phenotypic and target-based high-throughput screening approaches have been employed to discover new antibiotics, the identification of promising therapeutic candidates remains challenging. Each approach provides different information, and understanding their results can provide hypotheses for a mechanism of action (MoA) and reveal actionable chemical matter. Here, we describe a framework for identifying efficacy targets of bioactive compounds. High throughput biophysical profiling against a broad range of targets coupled with machine learning was employed to identify chemical features with predicted efficacy targets for a given phenotypic screen. We validate the approach on data from a set of 55 000 compounds in 24 historical internal antibacterial phenotypic screens and 636 bacterial targets screened in high-throughput biophysical binding assays. Models were built to reveal the relationships between phenotype, target, and chemotype, which recapitulated mechanisms for known antibacterials. We also prospectively identified novel inhibitors of dihydrofolate reductase with nanomolar antibacterial efficacy against Mycobacterium tuberculosis. Molecular modeling provided structural insight into target-ligand interactions underlying selective killing activity toward mycobacteria over human cells.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Tetrahydrofolate Dehydrogenase/metabolism , Drug Evaluation, Preclinical , HeLa Cells , High-Throughput Screening Assays , Humans , Ligands , Molecular Docking Simulation , Mycobacterium tuberculosis/growth & development , Tuberculosis/drug therapy , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...