Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 88: 129304, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37119973

ABSTRACT

Derivatives of lactam, cyclic urea and carbamate were explored as aniline amide replacements in a series of phthalazinone-based ROCK inhibitors. Potent ROCK2 inhibitors such as 22 were identified with excellent overall kinase selectivity as well as good isoform selectivity over ROCK1.


Subject(s)
Amides , Lactams , rho-Associated Kinases , Lactams/pharmacology , Protein Isoforms , rho-Associated Kinases/antagonists & inhibitors
2.
Proc Natl Acad Sci U S A ; 119(28): e2204174119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35787042

ABSTRACT

Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403+/-) with Lpar1-ablated mice to create mice carrying both genetic changes (403+/- LPAR1 -/-) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403+/- LPAR1WT, 403+/- LPAR1 -/- mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Receptors, Lysophosphatidic Acid/genetics , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Carrier Proteins , Disease Models, Animal , Endothelial Cells/pathology , Fibrosis , Hypertrophy/pathology , Mice
3.
Hum Gene Ther ; 33(7-8): 451-459, 2022 04.
Article in English | MEDLINE | ID: mdl-34913759

ABSTRACT

Pre-existing neutralizing antibodies (NAb) to adeno-associated virus (AAV) may diminish the efficacy of AAV-based therapies depending on the titer. To support gene therapy studies in pigs, the seroprevalence of NAb to AAV1, 2, 5, 6, 8, and 9 serotypes were assessed in the sera of 3 different strains of pigs consisting of 60 Norsvin Topigs-20 strain, 22 Gottingen minipigs, and 40 Yucatan minipigs. Cell-based NAb assays were developed for various AAV serotypes. The sera were tested for NAb in a Lec-2 cell line for AAV9 vector and in a COS-7 cell line for the other AAV serotypes. In the 60 Topigs-20 strain 2 to 4 years of age, 100% were positive for AAV2 NAb, 45% positive for AAV6 NAb, and ∼20% positive for each of AAV1, 5, 8, and 9 NAb. These data showed that ∼80% of Norsvin Topigs-20 pigs evaluated were seronegative for pre-existing NAb to the AAV1, 5, 8, and 9 serotypes, respectively. In 22 Gottingen minipigs at 5-6 months of age, serum AAV serotype-specific NAb coexisted with that of various other AAV serotypes at 32% to 46% between two serotypes. These results suggested that coexisting NAb resulted either from multiple AAV serotype coinfection or from one (or more) serotypes that can crossreact with other AAV serotypes in some minipigs. Among the 40 Yucatan minipigs, 20 of the minipigs were <3 months old and were all negative for NAb against AAV5, 8, and 9, and only one of these 20 pigs was positive to AAV1 and 6. We further determined the titers in those positive pigs and found most Gottingen minipigs had low titer at 1:20, whereas some of Topigs-20 pigs had titers between 1:80 and 1:320, and some of Yucatan pigs had titers between 1:160 and 1:640. These results suggested that the majority of the pigs in the three strains would be amenable to gene therapy study using AAV1, AAV5, AAV8, and AAV9 and that prescreening on circulating AAV antibodies could be helpful before inclusion of pigs into studies.


Subject(s)
Antibodies, Neutralizing , Dependovirus , Animals , Antibodies, Viral , Dependovirus/genetics , Genetic Vectors/genetics , Prevalence , Seroepidemiologic Studies , Serogroup , Swine , Swine, Miniature/genetics
4.
Eur J Heart Fail ; 23(12): 2021-2032, 2021 12.
Article in English | MEDLINE | ID: mdl-34632675

ABSTRACT

AIMS: Enhanced risk stratification of patients with aortic stenosis (AS) is necessary to identify patients at high risk for adverse outcomes, and may allow for better management of patient subgroups at high risk of myocardial damage. The objective of this study was to identify plasma biomarkers and multimarker profiles associated with adverse outcomes in AS. METHODS AND RESULTS: We studied 708 patients with calcific AS and measured 49 biomarkers using a Luminex platform. We studied the correlation between biomarkers and the risk of (i) death and (ii) death or heart failure-related hospital admission (DHFA). We also utilized machine-learning methods (a tree-based pipeline optimizer platform) to develop multimarker models associated with the risk of death and DHFA. In this cohort with a median follow-up of 2.8 years, multiple biomarkers were significantly predictive of death in analyses adjusted for clinical confounders, including tumour necrosis factor (TNF)-α [hazard ratio (HR) 1.28, P < 0.0001], TNF receptor 1 (TNFRSF1A; HR 1.38, P < 0.0001), fibroblast growth factor (FGF)-23 (HR 1.22, P < 0.0001), N-terminal pro B-type natriuretic peptide (NT-proBNP) (HR 1.58, P < 0.0001), matrix metalloproteinase-7 (HR 1.24, P = 0.0002), syndecan-1 (HR 1.27, P = 0.0002), suppression of tumorigenicity-2 (ST2) (IL1RL1; HR 1.22, P = 0.0002), interleukin (IL)-8 (CXCL8; HR 1.22, P = 0.0005), pentraxin (PTX)-3 (HR 1.17, P = 0.001), neutrophil gelatinase-associated lipocalin (LCN2; HR 1.18, P < 0.0001), osteoprotegerin (OPG) (TNFRSF11B; HR 1.26, P = 0.0002), and endostatin (COL18A1; HR 1.28, P = 0.0012). Several biomarkers were also significantly predictive of DHFA in adjusted analyses including FGF-23 (HR 1.36, P < 0.0001), TNF-α (HR 1.26, P < 0.0001), TNFR1 (HR 1.34, P < 0.0001), angiopoietin-2 (HR 1.26, P < 0.0001), syndecan-1 (HR 1.23, P = 0.0006), ST2 (HR 1.27, P < 0.0001), IL-8 (HR 1.18, P = 0.0009), PTX-3 (HR 1.18, P = 0.0002), OPG (HR 1.20, P = 0.0013), and NT-proBNP (HR 1.63, P < 0.0001). Machine-learning multimarker models were strongly associated with adverse outcomes (mean 1-year probability of death of 0%, 2%, and 60%; mean 1-year probability of DHFA of 0%, 4%, 97%; P < 0.0001). In these models, IL-6 (a biomarker of inflammation) and FGF-23 (a biomarker of calcification) emerged as the biomarkers of highest importance. CONCLUSIONS: Plasma biomarkers are strongly associated with the risk of adverse outcomes in patients with AS. Biomarkers of inflammation and calcification were most strongly related to prognosis.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Heart Failure , Biomarkers , Humans , Natriuretic Peptide, Brain , Peptide Fragments , Prognosis
5.
JACC Basic Transl Sci ; 6(2): 89-99, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33665511

ABSTRACT

Diabetes mellitus (DM) is associated with a higher risk of heart failure hospitalization and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Using SomaScan assays and proteomics analysis of plasma from participants in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial and the Penn Heart Failure Study, this study identified 10 proteins with significantly different expression in patients with HFpEF and DM. Of these, apolipoprotein M was found to mediate 72% (95% CI: 36% to 100%; p < 0.001) of the association between DM and the risk of cardiovascular death, aborted cardiac arrest, and heart failure hospitalization.

6.
Bioorg Med Chem Lett ; 30(21): 127495, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32798651

ABSTRACT

Structure-activity relationship optimization on a series of phenylpyrazole amides led to the identification of a dual ROCK1 and ROCK2 inhibitor (25) which demonstrated good potency, kinome selectivity and favorable pharmacokinetic profiles. Compound 25 was selected as a tool molecule for in vivo studies including evaluating hemodynamic effects in telemeterized mice, from which moderate decreases in blood pressure were observed.


Subject(s)
Amides/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Blood Pressure/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , rho-Associated Kinases/metabolism
7.
Bioorg Med Chem Lett ; 30(21): 127474, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32805407

ABSTRACT

A novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC50 of 0.67 nM and 0.18 nM respectively.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Structure-Activity Relationship , rho-Associated Kinases/metabolism
8.
Anal Biochem ; 602: 113766, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32389692

ABSTRACT

The S100A1 protein is a target of interest for the treatment of heart failure as it has been previously reported to be depleted in failing cardiomyocytes. A gene therapy approach leading to increased expression levels of the protein directly in the heart could potentially lead to restoration of contractile function and improve overall cell survival. S100A1 is a relatively small soluble protein that is extremely well conserved across species with only a single amino acid difference between the sequences in human and pig, a commonly used pre-clinical model for evaluation of efficacy, biodistribution and safety for cardiac-directed gene therapy approaches. This high homology presents a bioanalytical challenge for the accurate detection and quantitation of both endogenous (pig) and exogenous (human) transduced S100A1 proteins post treatment using a human S100A1 gene therapy in pigs. Here we present a sensitive and selective LC-MS/MS approach that can easily differentiate and simultaneously quantitate both human and pig S100A1 proteins. Additionally, we report on a detailed profiling of S100A1 protein in various pig tissues, a comprehensive evaluation of S100A1 distribution in pig hearts and a comparison to S100A1 levels in human cardiac samples.


Subject(s)
Gene Transfer Techniques , Myocytes, Cardiac/chemistry , S100 Proteins/analysis , S100 Proteins/genetics , Animals , Chromatography, Liquid , Humans , Myocytes, Cardiac/metabolism , S100 Proteins/metabolism , Swine , Tandem Mass Spectrometry
9.
J Med Chem ; 63(4): 1660-1670, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31990537

ABSTRACT

Endothelial lipase (EL) hydrolyzes phospholipids in high-density lipoprotein (HDL) resulting in reduction in plasma HDL levels. Studies with murine transgenic, KO, or loss-of-function variants strongly suggest that inhibition of EL will lead to sustained plasma high-density lipoprotein cholesterol (HDL-C) increase and, potentially, a reduced cardiovascular disease (CVD) risk. Herein, we describe the discovery of a series of oxadiazole ketones, which upon optimization, led to the identification of compound 12. Compound 12 was evaluated in a mouse pharmacodynamics (PD) model and demonstrated a 56% increase in plasma HDL-C. In a mouse reverse cholesterol transport study, compound 12 stimulated cholesterol efflux by 53% demonstrating HDL-C functionality.


Subject(s)
Cholesterol, HDL/metabolism , Enzyme Inhibitors/pharmacology , Ketones/pharmacology , Lipase/antagonists & inhibitors , Oxadiazoles/pharmacology , Animals , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Ketones/chemical synthesis , Ketones/pharmacokinetics , Male , Mice, Inbred C57BL , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 29(20): 126673, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31519373

ABSTRACT

A series of benzothiazoles with a cyano group was synthesized and evaluated as endothelial lipase (EL) inhibitors for the potential treatment of cardiovascular diseases. Efforts to reduce molecular weight and polarity in the series led to improved physicochemical properties of these compounds, as well as selectivity for EL over hepatic lipase (HL). As a benchmark compound, 8i demonstrated potent EL activity, an acceptable absorption, distribution, metabolism and elimination (ADME) profile and pharmacokinetic (PK) exposure which allowed further evaluation in preclinical animal efficacy studies.


Subject(s)
Benzothiazoles/chemistry , Cardiovascular Diseases/drug therapy , Enzyme Inhibitors/chemistry , Lipase/antagonists & inhibitors , Animals , Benzothiazoles/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Humans , Lipase/genetics , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 10(6): 911-916, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31223447

ABSTRACT

Lead optimization of the diphenylpyridylethanamine (DPPE) and triphenylethanamine (TPE) series of CETP inhibitors to improve their pharmaceutical profile is described. Polar groups at the N-terminus position in the DPPE series resulted in further improvement in potency and pharmaceutical properties concomitant with retaining the safety, efficacy, and pharmacokinetic (PK) profile. A structure-activity relationship observed in the DPPE series was extended to the corresponding analogs in the more potent TPE series, and further optimization resulted in the identification of 2-amino-N-((R)-1-(3-cyclopropoxy-4-fluorophenyl)-1-(3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)phenyl)-2-phenylethyl)-4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)butanamide (13). Compound 13 demonstrated no significant changes in either mean arterial blood pressure or heart rate in telemetry rats, had an excellent PK profile, and demonstrated robust efficacy in human CETP/apo-B-100 dual transgenic mice and in hamsters.

13.
Bioorg Med Chem Lett ; 29(15): 1918-1921, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31176700

ABSTRACT

A low level of high density lipoprotein (HDL) is an independent risk factor for cardiovascular disease. HDL reduces inflammation and plays a central role in reverse cholesterol transport, where cholesterol is removed from peripheral tissues and atherosclerotic plaque. One approach to increase plasma HDL is through inhibition of endothelial lipase (EL). EL hydrolyzes phospholipids in HDL resulting in reduction of plasma HDL. A series of benzothiazole sulfone amides was optimized for EL inhibition potency, lipase selectivity and improved pharmacokinetic profile leading to the identification of Compound 32. Compound 32 was evaluated in a mouse pharmacodynamic model and found to show no effect on HDL cholesterol level despite achieving targeted plasma exposure (Ctrough > 15 fold over mouse plasma EL IC50 over 4 days).

14.
Hum Gene Ther Methods ; 29(6): 237-250, 2018 12.
Article in English | MEDLINE | ID: mdl-30351228

ABSTRACT

Recombinant adeno associated viruses (rAAV) have become an important tool for the delivery of gene therapeutics due to long-standing safety and success in clinical trials. Since humans often become exposed to AAVs and develop anti-AAV antibodies (Abs), a potential impediment to the success of gene therapeutics is neutralization of the viral particle before it has had a chance to bind and enter target cells to release the transgene. Identification of subjects with preexisting Abs having neutralizing potential, and exclusion of such subjects from clinical studies is expected to enhance drug efficacy. In vitro cell-based reporter assays are most often employed to determine the level of neutralizing antibodies in a given population. Such assays measure the ability of the Abs to prevent viral binding and entry into cells by engaging epitopes on the viral capsid involved in host cell receptor binding. In general, cell-based assays are low throughput and labor intensive and may suffer from high variability and low sensitivity issues. In contrast, enzyme-linked immunosorbent assays (ELISAs) are simpler, less variable, and have higher throughput. Demonstrating a correlation between neutralizing Abs assessed by a cell-based assay and total binding Abs measured in an ELISA will enable the use and substitution of the latter for screening and exclusion of subjects. In this work, we describe the development of a highly sensitive, specific, robust, and reproducible chemiluminescent ELISA method for the detection of total anti-AAV9 Abs. Using this method, we analyzed the prevalence of preexisting anti-AAV9 Abs in 100 serum samples from heart disease patients. Analysis of neutralizing Abs in the same samples using an in vitro cell-based assay showed a strong correlation between total anti-AAV9 Abs and neutralizing Abs, indicating the feasibility of using the total Ab ELISA in the future for patient screening and exclusion.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dependovirus/immunology , Luciferases, Firefly/metabolism , Animals , Biomarkers/blood , Cell Line , Cricetinae , Cricetulus , Dependovirus/genetics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Humans , Luciferases, Firefly/genetics , Luminescence , Sensitivity and Specificity , Serogroup
15.
Bioorg Med Chem Lett ; 28(23-24): 3721-3725, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30348490

ABSTRACT

Endothelial lipase (EL) inhibitors have been shown to elevate HDL-C levels in pre-clinical murine models and have potential benefit in prevention and treatment of cardiovascular diseases. Modification of the 1-ethyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (DHP) lead, 1, led to the discovery of a series of potent tetrahydropyrimidinedione (THP) EL inhibitors. Synthesis and SAR studies including modification of the amide group, together with changes on the pyrimidinone core led to a series of arylcycloalkyl, indanyl, and tetralinyl substituted 5-amino or 5-hydroxypyrimidinedione-4-carboxamides. Several compounds were advanced to PK evaluation. Among them, compound 4a was one of the most potent with measurable ELHDL hSerum potency and compound 3g demonstrated the best overall pharmacokinetic parameters.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Animals , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Enzyme Inhibitors/blood , Enzyme Inhibitors/chemical synthesis , Humans , Lipase/blood , Lipase/metabolism , Mice , Models, Molecular , Pyrimidinones/blood , Pyrimidinones/chemical synthesis , Structure-Activity Relationship
16.
ACS Med Chem Lett ; 9(7): 673-678, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034599

ABSTRACT

Screening of a small set of nonselective lipase inhibitors against endothelial lipase (EL) identified a potent and reversible inhibitor, N-(3-(3,4-dichlorophenyl)propyl)-3-hydroxy-1-methyl-2-oxo-1,2-dihydropyridine-4-carboxamide (5; EL IC50 = 61 nM, ELHDL IC50 = 454 nM). Deck mining identified a related hit, N-(3-(3,4-dichlorophenyl)propyl)-4-hydroxy-1-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamide (6a; EL IC50 = 41 nM, ELHDL IC50 = 1760 nM). Both compounds were selective against lipoprotein lipase (LPL) but nonselective versus hepatic lipase (HL). Optimization of compound 6a for EL inhibition using HDL as substrate led to N-(4-(3,4-dichlorophenyl)butan-2-yl)-1-ethyl-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamide (7c; EL IC50 = 148 nM, ELHDL IC50 = 218 nM) having improved PK over compound 6a, providing a tool molecule to test for the ability to increase HDL-cholesterol (HDL-C) levels in vivo using a reversible EL inhibitor. Compound 7c did not increase HDL-C in vivo despite achieving plasma exposures targeted on the basis of enzyme activity and protein binding demonstrating the need to develop more physiologically relevant in vitro assays to guide compound progression for in vivo evaluation.

17.
J Pharm Sci ; 107(5): 1352-1360, 2018 05.
Article in English | MEDLINE | ID: mdl-29317226

ABSTRACT

BMS-A is an inhibitor of cholesteryl ester transfer protein and is a highly lipophilic compound (clogP 10.5) with poor aqueous solubility (<0.0001 mg/mL at pH 6.5). The compound exhibits low oral exposure when dosed as cosolvent solution formulations. The purpose of this study was to evaluate lipid-based formulations for enabling high-dose toxicology studies and enhancing toxicology margins of BMS-A in preclinical studies in nonrodent species. The solubility of BMS-A was screened in lipid and cosolvent/surfactant excipients, and prototype formulations were developed. In vitro tests showed that fine/microemulsions were formed after aqueous dilution of lipid formulations, and BMS-A was transferred from oil phase to aqueous phase with enhanced solubility following lipid digestion. When dosed in dogs at 200 mg/kg, a Gelucire-based formulation exhibited more than 10-fold higher exposure compared to the solution formulation and was thus selected for toxicology studies in dogs. For monkeys, an olive oil formulation was developed, and the exposure was about 7-fold higher than that from the solution. In summary, lipid-based drug delivery could be applied in early stages of drug discovery to enhance oral exposure and enable preclinical toxicology studies of highly lipophilic compounds, while facilitating the candidate selection of a molecule which is more specifically designed for bioperformance in a lipid-based drug delivery strategy.


Subject(s)
Benzamides/administration & dosage , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Emulsions/chemistry , Excipients/chemistry , Fluorobenzenes/administration & dosage , Lipids/chemistry , Administration, Oral , Animals , Benzamides/adverse effects , Benzamides/pharmacokinetics , Biological Availability , Dogs , Drug Compounding , Drug Stability , Fluorobenzenes/adverse effects , Fluorobenzenes/pharmacokinetics , Macaca fascicularis , Male , Mice, Inbred BALB C , Olive Oil/chemistry , Solubility , Triglycerides/chemistry , Water/chemistry
18.
ACS Med Chem Lett ; 9(12): 1263-1268, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613337

ABSTRACT

Endothelial lipase (EL) selectively metabolizes high density lipoprotein (HDL) particles. Inhibition of EL has been shown to increase HDL concentration in preclinical animal models and was targeted as a potential treatment of atherosclerosis. We describe the introduction of an α-sulfone moiety to a benzothiazole series of EL inhibitors resulting in increased potency versus EL. Optimization for selectivity versus hepatic lipase and pharmacokinetic properties resulted in the discovery of 24, which showed good in vitro potency and bioavailability but, unexpectedly, did not increase HDL in the mouse pharmacodynamic model at the target plasma exposure.

19.
Bioorg Med Chem Lett ; 26(14): 3278-3281, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27256912

ABSTRACT

Hydroxyl 1,2-diphenylethanamine analogs were identified as potent inhibitors of cholesterol ester transfer protein (CETP), a therapeutic target to raise HDL cholesterol. In an effort to improve the pharmaceutical properties in the previously disclosed DiPhenylPyridineEthanamine (DPPE) series, polar groups were introduced to the N-linked quaternary center. Optimization of analogues for potency, in vitro liability profile and efficacy led to identification of lead compound 16 which demonstrated robust pharmacodynamic effects in human CETP/apo-B100 dual transgenic mice.


Subject(s)
Amines/pharmacology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Drug Discovery , Amines/chemical synthesis , Amines/chemistry , Animals , Cholesterol Ester Transfer Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Mice, Transgenic , Molecular Structure , Structure-Activity Relationship
20.
J Med Chem ; 58(22): 9010-26, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26524347

ABSTRACT

Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound 10g is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (1) in moderately-fat fed hamsters. In contrast to the off-target liabilities with 1, no blood pressure increase was observed with 10g in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound 10g was advanced into preclinical safety studies.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Benzylamines/chemical synthesis , Benzylamines/pharmacology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Animals , Anticholesteremic Agents/pharmacokinetics , Atherosclerosis/drug therapy , Benzamides/pharmacokinetics , Benzylamines/pharmacokinetics , Blood Pressure/drug effects , Cell Line , Cholesterol/metabolism , Cholesterol, HDL/blood , Cricetinae , Cytochrome P-450 CYP11B2/antagonists & inhibitors , Dogs , Drug Discovery , Humans , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , Motor Activity/drug effects , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...