Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257327

ABSTRACT

Due to the versatile bioreactivity of aroyldihydrazone complexes as cost-effective alternatives with different transition metals, two novel bimetallic homo-complexes (VOLph and CuLph) were prepared via the coordination of a terephthalic dihydrazone diisatin ligand (H2Lph) with VO2+ and Cu2+ ions, respectively. The structure elucidation was confirmed by alternative spectral methods. Biologically, the H2Lph ligand and its MLph complexes (M2+ = VO2+ or Cu2+) were investigated as antimicrobial and anticancer agents. Their biochemical activities towards ctDNA (calf thymus DNA) were estimated using measurable titration viscometrically and spectrophotometrically, as well as the gel electrophoresis technique. The growth inhibition of both VOLph and CuLph complexes against microbial and cancer cells was measured, and the inhibition action, MIC, and IC50 were compared to the inhibition action of the free H2Lph ligand. Both VOLph and CuLph showed remarkable interactive binding with ctDNA compared to the free ligand H2Lph, based on Kb = 16.31, 16.04 and 12.41 × 107 mol-1 dm3 and ΔGb≠ = 47.11, -46.89, and -44.05 kJ mol-1 for VOLph, CuLph, and H2Lph, respectively, due to the central metal ion (VIVO and CuII ions). VOLph (with a higher oxidation state of the V4+ ion and oxo-ligand) exhibited enhanced interaction with the ctDNA molecule compared to CuLph, demonstrating the role and type of the central metal ion within the performed electronegative and electrophilic characters.


Subject(s)
Anti-Infective Agents , Isatin , Ligands , Anti-Infective Agents/pharmacology , Biological Assay , Ions
2.
Curr Med Chem ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37818562

ABSTRACT

Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.

3.
Int J Biol Macromol ; 249: 125917, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37524289

ABSTRACT

Two novel divalent bimetallic complexes were constructed from the complexation of O=V4+ and Zn2+ ions (VOL and ZnL), respectively, with diisatin oxalyldihydrazone ligand (H2L). Various spectroscopic tools were used to confirm their chemical structures (FT-IR, NMR, EI-Mass, and electronic spectra), besides, elemental analyses and conductivity features. To estimate the role of divalent metal ions in their coordination compound for developing their bio-reactivity, the free ligand H2Lox, and its complexes (VOL and ZnL) were employed spectroscopic investigations against the growth of some microbial series (fungi and bacteria) and also against three human cancer/normal cells. Furthermore, their interaction behavior against calf thymus DNA (ctDNA) was studied through viscometric and spectrophotometric studies to discover the role of O=V4+ and Zn2+ ions to determine the mode of binding with ctDNA. The inhibiting effect of H2L, VOL, and ZnL versus the titled microbial (bacterial and fungal) was built upon their inhibited zone areas in mm and the MIC concentrations in µM. Their action against the three human cancer cells' growth was evaluated by IC50 values in µM and the selectivity index in percentage. Both VOL and ZnL complexes exhibited an amazing series with three human cancer cell growth (according to the zone values in mm of inhibition, MIC in µM, and IC50 values in µM) compared to those of their uncoordinated H2L ligand. VOL demonstrated a distinguished interacting behavior with ctDNA more than that interaction of ZnL depending on the variation of the central metal ion chemical features. Within the covalent and non-covalent interaction modes, the interaction binding between H2L, VOL, and ZnL with ctDNA was discussed based on the electronic spectroscopic observation.


Subject(s)
Coordination Complexes , Neoplasms , Humans , Zinc/chemistry , Vanadates/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ligands , Spectroscopy, Fourier Transform Infrared , Bacteria , Microbial Sensitivity Tests
4.
ACS Omega ; 8(12): 11512-11535, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008130

ABSTRACT

In this work, three different derivatives of Schiff base, as mono- and di-Schiff bases, were successfully synthesized by the facile condensation of 2-aminopyridine, o-phenylenediamine, or 4-chloro-o-phenylenediamine with sodium salicylaldehyde-5-sulfonate (H1, H2, and H3, respectively). A combination of theoretical and practical studies was accomplished on the corrosion mitigation effect of the prepared Schiff base derivatives on C1018 steel in CO2-saturated 3.5% NaCl solution. The corrosion inhibition effect of the synthesized Schiff base molecules was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. The outcomes exhibited that Schiff base derivatives have an outstanding corrosion inhibition effect on carbon steel at particularly low concentrations in sweet conditions. The outcomes showed that Schiff base derivatives exhibited a satisfactory inhibition efficiency of 96.5% (H1), 97.7% (H2), and 98.1% (H3) with a dosage of 0.5 mM at 323 K. SEM/EDX analysis confirms the adsorbed inhibitor film's formation on the metal surface. The polarization plots indicate that the studied compounds behaved as inhibitors of the mixed type according to the isotherm model of Langmuir. The computational inspections (MD simulations and DFT calculations) display a good correlation with the investigational findings. The outcomes could be applied to assess the efficiency of the inhibiting agents in the gas and oil industry.

5.
Front Chem ; 11: 1125835, 2023.
Article in English | MEDLINE | ID: mdl-36998573

ABSTRACT

Water pollution caused by the frequent utilization of pesticides in the agriculture industry is one of the major environmental concerns that require proper attention. In this context, the photocatalytic removal of pesticides from contaminated water in the presence of metallic oxide photocatalysts is quite in approach. In the present study, Orthorhombic MoO3 has been modified with varying amount of cobalt oxide through wet impregnation for the removal of imidacloprid and imidacloprid-containing commercially available insecticide. The solid-state absorption response and band gap evaluation of synthesized composites revealed a significant extension of absorption cross-section and absorption edge in the visible region of the light spectrum than pristine MoO3. The indirect band gap energy varied from ∼2.88 eV (MoO3) to ∼2.15 eV (10% Co3O4-MoO3). The role of Co3O4 in minimizing the photo-excitons' recombination in MoO3 was studied using photoluminescence spectroscopy. The orthorhombic shape of MoO3 was confirmed through X-ray diffraction analysis and scanning electron microscopy. Moreover, the presence of distinct absorption edges and diffraction peaks corresponding to Co3O4 and MoO3 in absorption spectra and XRD patterns, respectively verified the composite nature of 10% Co3O4-MoO3. The photocatalytic study under natural sunlight irradiation showed higher photocatalytic removal (∼98%) of imidacloprid with relatively higher rate by 10% Co3O4-MoO3 composite among all contestants. Furthermore, the photocatalytic removal (∼93%) of commercially applied insecticide, i.e., Greeda was also explored.

6.
Bioorg Chem ; 114: 105106, 2021 09.
Article in English | MEDLINE | ID: mdl-34182310

ABSTRACT

The pharmacological efficacy of the variety tetradentate ligands encouraged us to design attractive compounds through effective synthetic procedure. The prepared Schiff base ligand 6,6'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azaneylylidene))bis(methaneylylidene))bis(2-ethoxy phenol (H2L), which derived from 4-chloro-o-phenylenediamine and 3-ethoxy-salicylaldehyde and its VO(II), Zn(II) and ZrO(II) metal chelates, have been synthesized and characterized with aim of that it may struggle the invasion of drug resistance. The chemical structural of studied compounds were discussed by TGA, elemental analysis, UV-Vis., 1H NMR, 13C NMR, FTIR, mass spectral, PXRD, molar conductance, magnetic susceptibility measurements and density functional theory. The results assigned square pyramid geometries for [VOL] and [ZrOL].2H2O chelates and an octahedral geometry for [ZnL(H2O)2].2H2O chelate. Powder XRD data showed that the complexes are monoclinic with polycrystalline nature. The results of CT-DNA interaction with the titled chelates showed that the binding between CT-DNA and the metal complexes occurs through intercalation mode. Their CT-DNA binding efficiency estimated in terms of their binding constants (Kb), which gave the order: VOL (6.9 × 105) > ZrOL (6.3 × 105) > ZnL(H2O)2 (5.5 × 105). The antimicrobial activities of the synthesized compounds were tested against selected fungal and bacterial strains using well diffusion technique. The obtained chelates showed higher antifungal and antibacterial activities than their corresponding ligand. Furthermore, the M-complexes showed higher potent cytotoxic effect toward HEK-293, human colorectal HepG-2, HCT-116 and MCF-7 adenocarcinoma cell lines compared to the free H2L ligand. Investigation of antioxidant property represented that all the prepared complexes have better radical scavenging potencies against DPPH radicals than the free H2L ligand. To study the molecular docking of proposed compounds versus Tyrosine kinases receptor (TKR), we used AutoDock1.5.6rc3® suite. The current compounds (H2L, VOL, ZrOL and ZnL(H2O)2) and STI were found to bind with C-kit of TKR with HBs at ILE789.A, ILE808.A, ASP810.A, GLU640.A and TYR846 amino acid residue and the binding energies were - 8.9, -8.93, -8.83, -1.48 and -10.39 kcal/mol respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chelating Agents/pharmacology , DNA/chemistry , Density Functional Theory , Molecular Docking Simulation , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Bacteria/drug effects , Binding Sites , Cattle , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Dose-Response Relationship, Drug , Fungi/drug effects , Humans , Ligands , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
7.
RSC Adv ; 9(59): 34311-34329, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-35529964

ABSTRACT

ONO-Pincer Schiff base salicylidene (HSaln ligand) complexes with VO2+, UO2 2+, MoO2 2+ and Mn2+ ions (MSaln complexes = VOSaln, UO2Saln, MoO2Saln and MnSaln, respectively) were synthesized and fully characterized by different physico-chemical tools. The VOSaln complex was further treated with 1,10-phenanthroline which afforded a new VO-complex (VOSaln-Ph). All complexes and their ligands, as eco-friendly reagents, were explored for their biological potential as antibacterial and antifungal agents. Reactivity of MSaln complexes against the tested pathogen strains exhibited a remarkable inhibitory effect compared to the coordinated ligand (HSaln) and applicable standard drugs. Moreover, the MSaln complex-DNA interaction was investigated by ultraviolet-visible spectroscopy, viscosity and gel electrophoresis techniques affording binding strengths in the order: UO2Saln > MnSaln > MoO2Saln > VOSaln-Ph > VOSaln. Additionally, the biological potential of the investigated compounds was further explored by molecular docking to illustrate the nature of the drug-DNA interactions. All MSaln complexes show respectable anti-proliferative potential as anticancer agents against selected human carcinoma cell lines. Aside from the biological activities these complexes (MSaln complexes) were also investigated for catalytic efficiency in the Suzuki-Miyaura cross-coupling system of phenylboronic acid with 2-bromopyridine in water, sustainably. The results indicated that the MnSaln catalyst performed well with high yield. The catalytic potential of MnSaln was compared in water, water-ionic liquid mixtures and ionic liquids.

8.
J Photochem Photobiol B ; 184: 34-43, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29778887

ABSTRACT

New series of oxo-vanadium N-salicyledieneamino acid Schiff base complexes are synthesized and characterized. They are synthesized from the reaction of sodium salicylaldehyde-5-sulfonate, some amino acids, alanine (VOHL1), leucine (VOHL2) or glycine (VOHL3) in an aqueous media, and leucine (VOHLpy1) or tryptophan (VOHLpy2) in pyridine with vanadyl acetylacetonate. The complexes are characterized by EA, TGA, IR, UV-Visible and mass spectra, conductivity and magnetic measurements. The biological activity of the VO-complexes shows that VOHL1, VOHL2 and VOHL3 exhibit anti-proliferative effect and may be used as anticancer drugs. VO-complexes manifest high toxicity, except VOHL2 is less toxic, and could be applied for the human being. VOHL1, VOHL2 and VOHL3 display remarkable SOD like potential and act as high inhibiting reagents. VOHLpy1 and VOHLpy2 show low inhibiting potentials. VO-complexes have good anti-oxidant effect, in which VOHL3 affords the best antioxidant activity. The interaction between VO-complexes and DNA is studied spectrophotometrically and by gel electrophoresis. Binding constants and spectrophotometric parameters indicate a strong interaction between VO-complexes and DNA. VO-complexes have respectable anti-bacterial and antifungal activities, where VOHL3 shows the maximum potential. DFT calculations of VOHL1 and VOHL3 were discussed in the light of their biological activity, which are convenient with the obtained results.


Subject(s)
Amino Acids/chemistry , Coordination Complexes/chemistry , Salicylic Acid/chemistry , Vanadium/chemistry , Amino Acids/pharmacology , Amino Acids/toxicity , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/toxicity , Bacteria/drug effects , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/toxicity , DNA/chemistry , Fungi/drug effects , Microbial Sensitivity Tests , Quantum Theory , Salicylic Acid/pharmacology , Salicylic Acid/toxicity , Schiff Bases/chemistry , Vanadium/pharmacology , Vanadium/toxicity
9.
Dalton Trans ; 45(5): 2261-72, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26660438

ABSTRACT

The first 3H-1,3-azaphospholo-pyridines 2a-c were synthesized as racemic mixtures in modest to medium yield by the reaction of N-(2-chloropyrid-3-yl)-trimethylacetimidoyl chloride 1 with RPLi2 (R = Ph, n-Bu, i-Bu), generated from RPH2 and BuLi in THF at -70 °C, and studied with respect to their suitability as ligands (L) in transition metal complexes. Reactions of 2a with group 6 metal(0) pentacarbonyls led to P-coordinated LM(CO)5 complexes 3a-5a (Cr, Mo, W) and the reaction of 2c with (norbornadiene)Mo(CO)4 surprisingly to 4c. [Rh(1,5-COD)Cl]2 and 2a,b, in metal/ligand ratio 1 : 1, furnished LRh(1,5-COD)Cl complexes 6a,b with P-coordination, 6b accompanied by a minor contamination by the bis-coordinated L[Rh(COD)Cl]2 complex 7b. Reactions of 2a,b with [(allyl)PdCl]2 proceeded in THF with dismutation of N-coordinated (allyl)PdCl and formed with 2a a labile crude product [(2a){(allyl)PdCl}1.2(PdCl2)0.8]·C4H8O, with the composition close to L[Pd(allyl)Cl]PdCl2 THF (8a·THF), which converted during crystallization to 9a, whereas 2b directly formed the N,N'-PdCl2-bridged bis[LPd(allyl)chloride] complex 9b. Conversion of 2b with equimolar amounts of Pd(CH3CN)2Cl2 in THF, or Na2PdCl4 in methanol, gave rise to the dimeric P,N-bridging complex 10b. Crystal structure analyses of 6a (rac), 9b·2CDCl3 (meso), 10b·4.5THF and 10b·2D6-acetone (rac) provided detailed structural information. 10b, but more efficiently complexes formed in situ from 2a,b and Pd2(DBA)3 or Pd(OAc)2, catalysed the arylamination of 2-bromopyridine with 2,4,6-trimethylaniline.

SELECTION OF CITATIONS
SEARCH DETAIL
...