Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(9): 11161-11170, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716040

ABSTRACT

We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 106. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms.

2.
Opt Lett ; 42(15): 2878-2881, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28957197

ABSTRACT

We design and demonstrate, to the best of our knowledge, the first whispering gallery germanium-on-silicon photodetector with evanescent coupling from a silicon bus waveguide in a CMOS-compatible process. The small footprint (63.6 µm2), high responsivity (∼1.04 A/W at 1530 nm), low bias voltage (-1 V), low dark current (2.03 nA), and large optoelectric bandwidth (32.9 GHz) of the detector enable simultaneous wavelength filtering and power detection, ideal for handling large network data traffic. In addition, with the resonant nature of the detector, we also optimize the design to enable long-wavelength detection, achieving a separate device with a detection range of up to 1630 nm with a >0.45 A/W responsivity, making it an important building block for optical communication networks.

3.
Opt Express ; 25(12): 13705-13713, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788913

ABSTRACT

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).

4.
Opt Lett ; 42(9): 1772-1775, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28454157

ABSTRACT

We demonstrate monolithic integration of a wavelength division multiplexed light source for silicon photonics by a cascade of erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers. Four DFB lasers with uniformly spaced emission wavelengths are cascaded in a series to simultaneously operate with no additional tuning required. A total output power of -10.9 dBm is obtained from the four DFBs with an average side mode suppression ratio of 38.1±2.5 dB. We characterize the temperature-dependent wavelength shift of the cascaded DFBs and observe a uniform dλ/dT of 0.02 nm/°C across all four lasers.

5.
Opt Lett ; 41(24): 5708-5711, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973495

ABSTRACT

We demonstrate an ultra-compact and low-threshold thulium microcavity laser that is monolithically integrated on a silicon chip. The integrated microlaser consists of an active thulium-doped aluminum oxide microcavity beside a passive silicon nitride bus waveguide, which enables on-chip pump-input and laser-output coupling. We observe lasing in the wavelength range of 1.8-1.9 µm under 1.6 µm resonant pumping and at varying waveguide-microcavity gap sizes. The microlaser exhibits a threshold as low as 773 µW (226 µW) and a slope efficiency as high as 24% (48%) with respect to the pump power coupled into the silicon nitride bus waveguide (microcavity). Its small footprint, minimal energy consumption, high efficiency, and silicon compatibility demonstrate that on-chip thulium lasers are promising light sources for silicon microphotonic systems.

6.
Opt Express ; 22(10): 12226-37, 2014 May 19.
Article in English | MEDLINE | ID: mdl-25051584

ABSTRACT

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

7.
Opt Lett ; 39(11): 3106-9, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24875988

ABSTRACT

On-chip, high-power, erbium-doped distributed feedback lasers are demonstrated in a CMOS-compatible fabrication flow. The laser cavities consist of silicon nitride waveguide and grating features, defined by wafer-scale immersion lithography and an erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The large mode size lasers demonstrate single-mode continuous wave operation with a maximum output power of 75 mW without any thermal damage. The laser output power does not saturate at high pump intensities and is, therefore, capable of delivering even higher on-chip signals if a stronger pump is utilized. The amplitude noise of the laser is investigated and the laser is shown to be stable and free from self-pulsing when the pump power is sufficiently above threshold.

8.
Opt Lett ; 38(20): 4002-4, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321905

ABSTRACT

We report on an integrated λ/4-shifted Bragg grating array using a wafer-scale complementary metal-oxide semiconductor (CMOS) compatible process with silicon-nitride waveguides. A sidewall grating was used to simplify the fabrication process, and a sampled Bragg grating with equivalent phase-shift structure was employed to achieve an accurate λ/4 phase shift. A four-channel λ/4-shifted Bragg grating array with highly uniform channel spacing was demonstrated with a measured channel spacing variation below 10 pm (1.25 GHz). The high channel-spacing uniformity and the CMOS-compatibility of the demonstrated device hold promise for integrated distributed feedback laser arrays for various silicon photonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...