Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 121(11): 2400-2406, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28252973

ABSTRACT

The rapidly developing field of bionanotechnology requires detailed knowledge of the mechanisms of interaction between inorganic matter and biomolecules. Under conditions different from those in an aqueous solution, however, the chemistry of these systems is elusive and may differ dramatically from their interactions in vitro and in vivo. Here, we report for the first time a photoemission study of a metal silver-DNA interface, formed in vacuo, in comparison with DNA-Ag+ and fluorescent DNA-Ag complexes formed in solution. The high-resolution photoelectron spectra reveal that in vacuo silver atoms interact mainly with oxygen atoms of the phosphodiester bond and deoxyribose in DNA, in contrast to the behavior of silver ions, which interact preferentially with the nitrogen atoms of the bases. This offers new insight into the mechanism of DNA metallization, which is of importance in creating metal-bio interfaces for nanotechnology applications.


Subject(s)
Cations, Monovalent/chemistry , DNA/chemistry , Silver Nitrate/chemistry , Silver/chemistry , Fluorescence , Nitrogen/chemistry , Oxygen/chemistry , Photoelectron Spectroscopy
2.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27248659

ABSTRACT

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

3.
ACS Nano ; 9(7): 7314-22, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26121999

ABSTRACT

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.

4.
Sci Rep ; 5: 8710, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25736576

ABSTRACT

The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Iron/chemistry , Membrane Glycoproteins/chemistry , Models, Chemical , Oxidation-Reduction , Photoelectron Spectroscopy , Protein Binding , Surface Properties , Vacuum , X-Ray Absorption Spectroscopy
5.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25734657

ABSTRACT

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

6.
Nano Lett ; 14(9): 4982-8, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25136909

ABSTRACT

Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom.

8.
J Chem Phys ; 127(9): 094701, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17824753

ABSTRACT

The utility of continuous beam of helium droplets for assembly, transport, and surface deposition of metal and molecular clusters is studied. Clusters of propyne having from about 10 to 10(4) molecules were obtained via sequential pickup of molecules by He droplets with average sizes in the range of 10(4)-10(7) atoms. The maximum attainable flux of the propyne molecules carried by He droplets was found to be in the range of (5-15)x10(15) molecules sr(-1) s(-1), being larger in larger droplets. The size of the clusters and the flux of the transported species are ultimately limited by the evaporative extinction of the entire helium droplet upon capture of particles. It is shown that the attenuation of the He droplet beam in the process of the cluster growth can be used in order to obtain the average size and the binding energy of the clusters. Furthermore, we used He droplets for assembling and surface deposition of gold and silver clusters having about 500 atoms. Typical deposition rate of metal atoms of about 3 x 10(15) atoms sr(-1) s(-1) is comparable to or larger than obtained with other beam deposition techniques. We propose that doping of He droplets by Au and Ag atoms in two separate pickup chambers leads to formation of the bimetal clusters having core-shell structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...