Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Waste Manag Res ; 40(9): 1402-1411, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35199614

ABSTRACT

Proper management of municipal solid waste (MSW) is crucial to avoid pollution, environmental impacts and threat to public health. The problem of MSW is mainly arising from inadequate landfill site management. The objective of this study was to evaluate the impact of management practices and environmental risks at two landfill sites. The landfills were subject to long-term (10 years) vegetation monitoring. The vegetation was assessed using a floristic survey of identified plant species. The vegetation analysis showed that significant differences existed between the two landfill locations, with neophytes, invasive and expansive species dominating on one of the landfill sites, which may be attributed to climatic and geomorphological differences between the two sites, but also to variations in landfill management. These environmentally problematic species can potentially spread from the landfill into adjacent ecosystems, displace native plants and degrade adjacent farmland areas. The study of vegetation monitoring data suggests that, in addition to other types of monitoring, landfills should be subjected to regular vegetation biomonitoring, too. Landfill management practices should target the regulation of unwanted species, create conditions that are favourable to native plant species and provide as early as possible the restoration of filled cells.


Subject(s)
Refuse Disposal , Waste Management , Ecosystem , Environment , Solid Waste/analysis , Waste Disposal Facilities
2.
J Environ Manage ; 302(Pt A): 114012, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34731708

ABSTRACT

The volume of municipal solid waste (MSW) inputs is rapidly increasing with a growing human population, and its composition is changing due an increased diversity of materials being deposited. There is an associated increase in leachate, a common toxic byproduct of MSW facilities that must be collected and treated prior to its release into the environment. There is growing interest in plant-based methods that are economical and efficient for leachate toxicity assessment such as biological tests that use indicator species. In the present study, the tolerance thresholds of two herbaceous species, Sinapis alba L. (mustard) and Triticum aestivum L. (wheat) to increasing shares of leachate sourced from an MSW facility in the Czech Republic were assessed through a variety of physiological parameters. Soil-based biotests showed a stimulation in the shoot biomass, leaf expansion, primary root elongation and carbon assimilation rate of the selected plant species to leachate concentrations between 20 and 50 %. Higher leachate concentrations led to reductions in most physiological parameters, especially the elongation of seedling roots when growth solutions with >50 % leachate were applied. While S. alba was more sensitive to increasing proportions of leachate in terms of growth parameters of the shoot tissues, photosystem II efficiency and chlorophyll pigment concentrations were more responsive in T. aestivum, indicating species-dependent differences. The present biotests provide further support for the use of both Sinapis alba L and Triticum aestivum L. as indicator species of phytotoxicity.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Chlorophyll , Humans , Seedlings/chemistry , Sinapis , Solid Waste , Triticum , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Sensors (Basel) ; 20(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105892

ABSTRACT

Displacements of landfills play an important role in the reclamation process and geotechnical safety improvement of such sites. Landfill settlements are defined as a vertical displacement of waste body due to compression, degradable nature of the waste, and creep phenomenon of the waste particles. Waste composition is more diverse than natural soil. Thus, it has to be properly placed and compacted since the landfill body will continuously settle down. Several models of the landfill displacement estimation have already been developed. The aim of the present study was: (i) to review the methods of landfill settlements computation and (ii) to propose the model allowing landfill body displacements simulation based on monitoring datasets applying a Global Navigation Satellite Systems (GNSS) measurement. The new model employs Gauss-Newton iteration and Runge-Kutta methods to estimate landfill surface displacements. The objectives were to analyse and mathematically describe the landfill body displacements. The GNSS geodetic survey and computations allowed concluding that the landfill body has been transformed over the years. The results revealed that the curves of waste displacement are in agreement with the measured total displacement of the landfill, and all curves corresponding to waste displacement are perpendicular to the active edge of the landfill. In the period of a maximum of 4.5 years after the waste deposition with a layer of up to 16.2 m thickness, the phenomenon of expansion was observed, which then disappears, and more settlement occurs due to the gravity of upper layers. The analysed landfill as a whole does not experience significant displacements. Neither of the slope failures are observed, even for large inclination.

4.
Sci Total Environ ; 738: 139788, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32531595

ABSTRACT

Climatological research over the past two decades makes it clear that the Earth's climate will change. Climate change has many, mostly adverse, effects on the human health. Environmental anthropogenic changes represent significant health risks including factors that may increase probability and seriousness of skin cancer diseases. There are many scientific studies on skin cancer but only a few of them are focused on environment changes and their influence on the behaviour of humans, which may lead to skin cancer. The goal of the research was to analyse environment changes in the city of Brno (Czech Republic) and their influence on the behaviour of people and some skin diseases. A research hypothesis was set up that total increase in the incidence of skin diseases would be monitored. 1757 patients aged 25-65 years participated in the research. The analysis was performed based on measured (mean annual temperatures, average monthly temperatures, ultraviolet index values, and numbers of sunny days and sunny hours) data in 2011-2019. In order to monitor the trend, temperature data from 1961 to 2019 were evaluated too. The analysed data indicate that the trend of average monthly and annual temperatures observed was increasing in recent years. Moreover, based on data obtained from the analysed doctor's office it was found out that the incidence of skin diseases increased in the studied period. The main reasons to increase include excessive exposure to sun, extended average age of the population, ozone layer depletion, climatic and weather changes, increased migration and behaviour of people.


Subject(s)
Skin Neoplasms , Ultraviolet Rays , Adult , Aged , Czech Republic , Humans , Incidence , Middle Aged , Sunlight
5.
Sci Total Environ ; 723: 138202, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32224413

ABSTRACT

Food waste has recently gained much worldwide interest due to its influence on the environment, economy and society. Gathering and recycling of food waste is the essential issue in the waste management and the interest in processing food waste arises mainly out of influence of the processes of food putrefaction on the environment. Composting of food waste encounters a number of technical challenges, arising weak physical structure of food waste with weak porosity, high content of water, low carbon-to-nitrogen relation and fast hydrolysis and accumulation of organic acids during composting. Therefore, the aim of this study was to investigate the challenges facing installations intended for food waste composting, with the purpose to their optimization with use of appropriate additives. Physico-chemical, biochemical characteristics and phytotoxicity of the produced compost has been measured. Two additives (20% biochar and 20% sawdust) were chosen from experimental variants I-XII containing different additives (biochar, Devonian sand, sawdust) in diverse concentration. The use of selected additives seems to slightly increase potential of hydrogen value and carbon-to-nitrogen ratio, while decreasing electrical conductivity in comparison with control sample. The results obtained also show that the addition of biochar leads to an increase dehydrogenase, phosphatase and arylsulphatase activities and addition of sawdust has a positive effect on beta-D-glucosidase, protease, phosphatase and arylsulphatase activities. The phytotoxicity test shows that the compost made of food waste (control sample) and with addition of biochar is toxic to plants. By contrast, the addition of sawdust shows that the compost was not phytotoxic. In conclusion, the addition of additives does not provide unambiguous results in terms of the quality of the final product in all monitored parameters. Therefore, we can state that food waste was reduced and hygienized, and that the final product does not meet conditions for mature compost.


Subject(s)
Composting , Refuse Disposal , Food , Nitrogen , Soil
6.
Waste Manag ; 106: 173-183, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32222681

ABSTRACT

One of crucial waste management problems is the management of organic waste. This activity employs the composting. In case of green waste, its application seems reasonable, whereas the use of selected mixed waste raises problems related to the compost quality. Across countries, the non-sterile organic fraction of municipal solid waste is being separated through the mechanical-biological treatment. The technology is a solution of waste treatment and meets objectives set out in the Landfill Directive. There are many problems associated with the use of output products. The use of compost as a fertilizer requires determination of its impact on the environment. Compost quality can be assessed using analytical methods and phytotoxicity tests. Therefore, the aim of this study was to describe changes in physico-chemical, enzymatic, phytotoxicity and vegetation parameters occurring in composts from two systems - a prismatic installation for green waste, and a mechanical-biological treatment installation. The compost from green waste exhibited greater stability. Values of dehydrogenase activity were lower if compared with the mechanically and biologically treated compost, which indicates lower compost maturity. The biomass production of Brassica napus L. and Fetuca rubra L. was higher in the variant with the application of green compost. The influence on Hordeum vulgare L., Cannabis sativa L., and Sinapis alba L. depended on the plant type and the compost used. Nevertheless, the compost from green waste was less toxic. The evidence from this study suggests that the mechanical-biological treatment had problems associated with the maturation and quality of the final product.


Subject(s)
Composting , Waste Management , Biomass , Soil , Solid Waste
7.
Sci Total Environ ; 723: 137971, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32220733

ABSTRACT

Waste composting is becoming a key element of integrated waste management. Composting has a number of advantages, including economic benefits, improvement of soil properties through the use of compost, reduction in the use of chemical fertilisers, and minimization of environmental pollution. Composting on a landfill surface appears to be an economical solution that can help close the waste loop and material cycle. In this study, a composting plant located on a landfill surface was analysed. The main objective of the research was to identify the species of plants growing in the organic fraction of municipal solid waste in temporary storage, in the composting plant, and in maturing compost located in a reclaimed plot at the landfill site. During monitoring, 88 plant species were identified altogether. It was observed that compost can become a source of weed infestation. To control the presence of weeds in the compost, basic principles of composting are to be followed to reduce the quantity of weed seeds. The thermophilic phase must occur to reduce the viability of seeds in the input materials and sufficient moisture must be ensured during the composting process. When these principles are strictly observed and the stored compost is maintained without vegetation, the supply of seeds in the compost will be low, and the undesirable spread of plant species to adjacent areas will be controlled. The results showed that the use of the obtained compost did not result in the propagation of weed species. This study demonstrates that composting on a reclaimed landfill offers various advantages such as a closed waste management cycle, coverage of the active landfill body, and fertilisation of the reclaimed part of the landfill.

8.
RSC Adv ; 10(49): 29202-29213, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521111

ABSTRACT

Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.

9.
Article in English | MEDLINE | ID: mdl-31842278

ABSTRACT

When the landfill use comes to end, important subsequent steps include aftercare, safety assurance, and ecological regeneration. Landfill revegetation is cost-effective and eco-friendly approach in the management of landfill areas, which serves the purpose of stabilization and provides a pleasant landscape. There are various vegetation types that can be planted, yet grass species are often used for low-cost reasons. Plants can be important sources of air pollution, particularly by grass pollen. The main goal of our study was to identify plant species that produce allergenic pollen. Long-term vegetation monitoring took place on three sites in the growing seasons of years 2008-2018. Studied objects were landfills located in the Czech Republic. The vegetation was assessed using a floristic survey of identified plant species. Plant species that produced allergens were recorded. During the monitoring, 298 plant species were determined. Plant species with allergenic pollen have a considerable share in the landfill vegetation. Thus, landfills are potential sources of various kinds of allergenic pollen. Moreover, our results indicated that there are three periods of pollen production: early spring, late spring, and early summer; late summer; and autumn. The second period is typical for the production of highly allergenic pollen by grasses. Most detected plant species with allergenic pollen are common for all monitored sites, which demonstrates that the vegetation of landfills is a significant source of allergenic pollen.


Subject(s)
Allergens , Pollen , Waste Disposal Facilities , Air Pollution , Allergens/immunology , Czech Republic , Environmental Monitoring , Plants/immunology , Pollen/immunology , Risk , Seasons , Solid Waste
10.
Chemosphere ; 220: 678-686, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30605810

ABSTRACT

Urban soil areas can be contaminated with potentially dangerous heavy metals (HM), which might have got there by means of the human activity. The aim of the present study was to determine the contamination level of the city park soils and its impact on urban ecosystem. The indices assessing soil contamination such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (IPIN), and indices assessing health risks, namely Hazard Index (HI) and Carcinogenic Risk (CR), have been calculated. Furthermore, the phytotoxic effect of the soil samples has been determined. The soil contains in average 58.6 mg/kg Zn, 0.3 mg/kg Cd, 27.2 mg/kg Pb and 16.6 mg/kg Cu. Based on EF index, it has been confirmed that the increased amounts of Zn, Cd and Pb in the soil are of the anthropogenic origin. The soil may be classified as moderately to strongly polluted in the case of Zn and Pb according to Igeo. Nevertheless, soil contamination in the park is at a safe level as per IPIN. Based on HI and CR indices, it is possible to state that the soil in the park does not pose any health risks. Subject to the outcomes of the toxicity test, the concentrations of HMs found out in the soils are not inhibitory for plants.


Subject(s)
Ecosystem , Metals, Heavy/analysis , Parks, Recreational , Soil Pollutants/analysis , Soil/chemistry , China , Cities , Humans , Metals, Heavy/toxicity , Plants/drug effects , Risk Assessment , Soil Pollutants/toxicity
11.
Chemosphere ; 208: 569-578, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29890495

ABSTRACT

Effective and efficient assessments of the site conditions are required for the sustainable management of landfills. In this study we propose an evaluation method to determine the degree of environmental contamination by the contest of heavy metals (HM) concentrations in soil and plants (Tanacetum vulgare L., Carduus L., Plantago major L.). We compared HM concentrations in the soil, leaves, stem and roots of those native plants. Content of HM in samples was at the same level in all localities, except content of Zn. These values confirm that the area is not naturally burdened by increased HM content in the soil, and also that the deposited municipal waste or the material used for reclamation and composting does not contain risk elements. The content of selected HM was monitored in plants naturally occurring in the area of interest. We can state that the content of individual HM was in the plant biomass at the same level. The measured values confirmed that the largest number of HM was in roots, then in stem and the least in leaves. In addition, specific indexes were determined: BAC, TF, CF, PLI and Igeo. The BAC values confirmed that the individual plants had the ability to accumulate Pb and Cd (BAC> 2) but were limited to bind Mn and Zn (BAC <1). TF values confirmed that plants had a different ability to transport HM from roots to aboveground biomass. Potential soil contamination was detected using CF, PLI and Igeo indexes but contamination by HM was not confirmed.


Subject(s)
Environmental Pollution , Metals, Heavy/analysis , Plants/metabolism , Refuse Disposal , Environmental Monitoring , Metals, Heavy/pharmacokinetics , Risk Assessment , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Waste Disposal Facilities
12.
Chemosphere ; 185: 1011-1018, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28753902

ABSTRACT

Heavy metal pollution is an important concern because of its potential to affect human health. This study was conducted to analyze plants growing on a landfill body and in its surroundings to determine their potential for heavy metal accumulation. In addition, the enrichment coefficient (EC) for the plant/soil system was used for determining the environmental contamination from a landfill in terms of heavy metal accumulation. The samples were taken in 2013-2014. Of the analyzed metals, iron achieved the highest values in the samples, i.e. - stalk (103.4-6564.6 mg/kg DM), roots (6563.6-33,036.6 mg/kg DM), leaf (535.1-11,275 mg/kg DM) and soil (12,389-39,381.9 mg/kg DM). The highest concentrations were determined in 2013 for Fe, Mn and Zn. Iron achieved the highest concentrations in the years 2013-2014. Next, EC values were then calculated, with the highest noted for Cd. Cd, as well as Cr, Ni and Zn are accumulated mostly in the leaves, whereas Co, Cu, Fe, Hg, Mn and Pb are accumulated mainly in the roots of T. vulgare.


Subject(s)
Environmental Monitoring , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Tanacetum/metabolism , Environmental Pollution , Humans , Iron , Metals, Heavy/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Waste Disposal Facilities
13.
Redox Biol ; 12: 139-149, 2017 08.
Article in English | MEDLINE | ID: mdl-28236766

ABSTRACT

The World Health Organization designates lidocaine as an essential medicine in healthcare, greatly increasing the probability of human exposure. Its use has been associated with ROS generation and neurotoxicity. Physiological and metabolomic alterations, and genetics leading to the clinically observed adverse effects have not been temporally characterized. To study alterations that may lead to these undesirable effects, Saccharomyces cerevisiae grown on aerobic carbon sources to stationary phase was assessed over 6h. Exposure of an LC50 dose of lidocaine, increased mitochondrial depolarization and ROS/RNS generation assessed using JC-1, ROS/RNS specific probes, and FACS. Intracellular calcium also increased, assessed by ICP-MS. Measurement of the relative ATP and ADP concentrations indicates an initial 3-fold depletion of ATP suggesting an alteration in the ATP:ADP ratio. At the 6h time point the lidocaine exposed population contained ATP concentrations roughly 85% that of the negative control suggesting the surviving population adapted its metabolic pathways to, at least partially restore cellular bioenergetics. Metabolite analysis indicates an increase of intermediates in the pentose phosphate pathway, the preparatory phase of glycolysis, and NADPH. Oxidative stress produced by lidocaine exposure targets aconitase decreasing its activity with an observed decrease in isocitrate and an increase citrate. Similarly, increases in α-ketoglutarate, malate, and oxaloacetate imply activation of anaplerotic reactions. Antioxidant molecule glutathione and its precursor amino acids, cysteine and glutamate were greatly increased at later time points. Phosphatidylserine externalization suggestive of early phase apoptosis was also observed. Genetic studies using metacaspase null strains showed resistance to lidocaine induced cell death. These data suggest lidocaine induces perpetual mitochondrial depolarization, ROS/RNS generation along with increased glutathione to combat the oxidative cellular environment, glycolytic to PPP cycling of carbon generating NADPH, obstruction of carbon flow through the TCA cycle, decreased ATP generation, and metacaspase dependent apoptotic cell death.


Subject(s)
Anesthetics, Local/adverse effects , Lidocaine/adverse effects , Metabolomics/methods , Saccharomyces cerevisiae/drug effects , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Energy Metabolism/drug effects , Glutathione/metabolism , Humans , Microbial Viability/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/metabolism , Tandem Mass Spectrometry
14.
Waste Manag ; 61: 157-164, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28065548

ABSTRACT

An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi.


Subject(s)
Fungi/metabolism , Refuse Disposal/methods , Soil Microbiology , Soil , Solid Waste , Biodegradation, Environmental , Carbon/metabolism , Coriolaceae/metabolism , Enzymes/metabolism , Hydrogen-Ion Concentration , Nitrogen/metabolism , Phanerochaete/metabolism , Trametes/metabolism
15.
OMICS ; 20(12): 711-726, 2016 12.
Article in English | MEDLINE | ID: mdl-27849439

ABSTRACT

Diabetes mellitus type 1 (DM1) is a major public health problem that continues to burden the healthcare systems worldwide, costing exponentially more as the epidemic grows. Innovative strategies and omics system diagnostics for earlier diagnosis or prognostication of DM1 are essential to prevent secondary complications and alleviate the associated economic burden. In a preclinical study design that involved streptozotocin (STZ)-induced DM1, insulin-treated STZ-induced DM1, and control rats, we characterized the insulin-dependent and -independent changes in protein profiles in liver samples. Digested proteins were subjected to LC-MSE for proteomic data. Progenesis QI data processing and analysis of variance were utilized for statistical analyses. We found 305 proteins with significantly altered abundance among the control, DM1, and insulin-treated DM1 groups (p < 0.05). These differentially regulated proteins were related to enzymes that function in key metabolic pathways and stress responses. For example, gluconeogenesis appeared to return to control levels in the DM1 group after insulin treatment, with the restoration of gluconeogenesis regulatory enzyme, FBP1. Insulin administration to DM1 rats also restored the blood glucose levels and enzymes of general stress and antioxidant response systems. These observations are crucial for insights on DM1 pathophysiology and new molecular targets for future clinical biomarkers, drug discovery, and development. Additionally, we underscore that proteomics offers much potential in preclinical biomarker discovery for diabetes as well as common complex diseases such as cancer, dementia, and infectious disorders.


Subject(s)
Insulin/metabolism , Liver/metabolism , Precision Medicine/methods , Proteome/metabolism , Animals , Biomarkers/metabolism , Computational Biology , Male , Proteomics , Rats
16.
Proteomics ; 16(13): 1889-903, 2016 07.
Article in English | MEDLINE | ID: mdl-27193513

ABSTRACT

Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death.


Subject(s)
Anesthetics, Local/adverse effects , Lidocaine/adverse effects , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Two-Dimensional Difference Gel Electrophoresis/methods , Carbohydrate Metabolism/drug effects , Protein Interaction Maps/drug effects , Proteome/metabolism , Proteomics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...