Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Comb Sci ; 21(11): 753-759, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31610114

ABSTRACT

The discovery of new thermoelectric materials has the potential to benefit from advances in high-throughput methodologies. Traditional synthesis and characterization routes for thermoelectrics are time-consuming serial processes. In contrast, high-throughput materials discovery is commonly done by thin film growth, which may produce microstructures that are metastable or compositionally graded and, therefore, are challenging to characterize. As a middle ground between bulk synthesis and thin film deposition, we find that the aerosol deposition process can rapidly produce samples that exhibit electronic property trends consistent with those produced by traditional bulk means. We demonstrate rapid growth of discrete thermoelectric thick films of varying chemical compositions (Pb1-xSnxTe) from PbTe and SnTe polydisperse micrometer sized powder feedstocks. The high deposition rate (near 1 µm min-1) and resultant microstructures are advantageous as the diffusion length scales promote rapid thermal treatment and equilibrium phase formation. Room-temperature high-throughput measurements of the Seebeck coefficient and resistivity are compared to traditionally produced bulk materials. The Seebeck coefficient of the films follows the trends of traditional samples, but the resistivity is found to be more sensitive to microstructural effects. Ultimately, we demonstrate a framework for exploratory materials science using aerosol deposition and high-throughput characterization instrumentation.


Subject(s)
Aerosols/chemistry , Alloys/chemistry , Electrochemical Techniques , Lead/chemistry , Tellurium/chemistry , Tin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...