Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 14(1): 362-372, 2021 01.
Article in English | MEDLINE | ID: mdl-33064927

ABSTRACT

Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase-1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three-prong strategy. First, we added new N-glycans to ENPP1; second, we optimized pH-dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two-step process to improve sialylation by first producing ENPP1-Fc in cells stably transfected with human α-2,6-sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4-O-Bu3 ManNAc. These steps sequentially increased the half-life of the parent compound in rodents from 37 hours to ~ 67 hours with an added N-glycan, to ~ 96 hours with optimized pH-dependent Fc recycling, to ~ 204 hours when the therapeutic was produced in ST6-overexpressing cells with 1,3,4-O-Bu3 ManNAc supplementation. The alterations were demonstrated to increase drug potency by maintaining efficacious levels of plasma phosphoanhydride pyrophosphate in ENPP1-deficient mice when the optimized biologic was administered at a 10-fold lower mass dose less frequently than the parent compound-once every 10 days vs. 3 times a week. We believe these improvements represent a general strategy to rationally optimize protein therapeutics.


Subject(s)
Histocompatibility Antigens Class I/therapeutic use , Phosphoric Diester Hydrolases/pharmacology , Protein Engineering , Pyrophosphatases/pharmacology , Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/pharmacology , Vascular Calcification/drug therapy , Animals , Area Under Curve , Disease Models, Animal , Enzyme Replacement Therapy/methods , Glycosylation , Half-Life , Histocompatibility Antigens Class I/genetics , Humans , Male , Mice, Transgenic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/isolation & purification , Phosphoric Diester Hydrolases/therapeutic use , Protein Structure, Tertiary/genetics , Pyrophosphatases/genetics , Pyrophosphatases/isolation & purification , Pyrophosphatases/therapeutic use , Receptors, Fc/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/therapeutic use , Vascular Calcification/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...