Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35744391

ABSTRACT

The paper presents the results of the preparation of bulk and porous Ti-Ta-Ag alloys. The first step of this study was the preparation of the powder alloys using mechanical alloying (MA). The second was hot-pressing consolidation and sintering with a space holder, which resulted in high-density and high-porosity (approximately 70%) samples, respectively. Porosity, morphology, mechanical properties, biocompatibility, and antibacterial behavior were investigated and related to the preparation procedures. The authors found that Ta and Ag heavily influence the microstructure and determine other biomaterial-related properties. These new materials showed positive behavior in the MTT assay, and antibacterial properties. Such materials could find applications in the production of hard tissue implants.

2.
Materials (Basel) ; 15(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35329580

ABSTRACT

The paper presents results of preparation and modification of Ti20Nb5Zr foams by a thermal dealloying method followed by electrochemical modification. The first step of this study was the preparation of Ti20Nb5Zr30Mg nanopowder using mechanical alloying (MA). The second was forming green compacts by cold pressing and then sintering with magnesium dealloyed from the structure, which resulted in pores formation. The next step was surface modification by electrochemical etching and silver nanoparticle deposition. Porosity, morphology, mechanical properties as well as biocompatibility and antibacterial behavior were investigated. Titanium foam porosity up to approximately 60% and wide pore size distribution were successfully prepared. The new materials have shown positive behavior in the MTT assay as well as antibacterial properties. These results confirmed great potential for thermal dealloying in preparation of porous structures.

3.
Materials (Basel) ; 12(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443338

ABSTRACT

The paper presents a promising method of preparation of titanium-based foams by the thermal dealloying method. The first step of this study was the Ti-Ta-Mg based nanopowder preparation using the mechanical alloying (MA) process performed at room temperature. The next step was forming the green compacts by cold pressing and then sintering with magnesium dealloying from the titanium-based alloy structure. The mechanism of the porous structure formation was based on the removal of magnesium from the titanium alloy at a temperature higher than the boiling point of magnesium (1090 °C). The influence of the Mg content on the formation of the porous Ti-30Ta foam has been investigated. The sintering stage was performed in vacuum. During the dealloying process, the magnesium atoms diffuse from the middle to the surface of the sample and combine to form vapors and then evaporate leaving pores surrounded by the metallic scaffold. The porosity, the mechanical properties as well as biocompatibility have been investigated. The titanium-based foam of high porosity (up to 76%) and the pore size distribution from nano- to micro-scale have been successfully prepared. For the medical applications, the Ti-Ta metallic foams have shown a positive behavior in the MTT test. The as-shown results clearly exhibit a great potential for thermal dealloying in the preparation of porous structures.

4.
Materials (Basel) ; 8(4): 1398-1412, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-28788008

ABSTRACT

The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a "space-holder" sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthesized by mechanical alloying and annealing mixed with 1.0 mm diameter of saccharose crystals was finally compacted in the form of pellets. In the next step, the saccharose crystals were dissolved in water, leaving open spaces surrounded by metallic-bioceramic scaffold. The sintering of the scaffold leads to foam formation. It was found that 1:1 Ti-10 wt% 45S5 Bioglass-1 wt% Ag/sugar ratio leads to porosities of about 70% with pore diameter of about 0.3-1.1 mm. The microstructure, corrosion resistance in Ringer's solution of the produced foams were investigated. The value of the compression strength for the Ti-10 wt% 45S5 Bioglass-1 wt% Ag foam with 70% porosity was 1.5 MPa and the Young's modulus was 34 MPa. Silver modified Ti-10 wt% 45S5 Bioglass composites possess excellent antibacterial activities against Staphylococcus aureus. Porous Ti-10 wt% 45S5 Bioglass-1 wt% foam could be a possible candidate for medical implants applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...