Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 13(2): 321-31, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20556524

ABSTRACT

PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.


Subject(s)
Dideoxynucleosides/pharmacokinetics , Floxuridine/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Positron-Emission Tomography/methods , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dideoxynucleosides/pharmacology , Flow Cytometry , Floxuridine/pharmacology , Humans , Magnetic Resonance Imaging , Mice , Time Factors , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Eur J Nucl Med Mol Imaging ; 33(11): 1352-63, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16896663

ABSTRACT

BACKGROUND: Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of alpha particles. In contrast to alpha radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. DISCUSSION: Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided alpha and beta radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation.


Subject(s)
DNA Damage , DNA, Neoplasm/radiation effects , Electrons/therapeutic use , Neoplasms/genetics , Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Humans , Radiopharmaceuticals/therapeutic use
4.
Eur J Nucl Med Mol Imaging ; 33(5): 613-20, 2006 May.
Article in English | MEDLINE | ID: mdl-16450135

ABSTRACT

PURPOSE: Radio-iododeoxyuridine (IdUrd) is a potential Auger radiation therapy agent incorporated into DNA during the synthesis phase. In this study we sought to optimise S-phase targeting by modulating cellular cycling and radio-IdUrd DNA incorporation using short non-toxic fluorodeoxyuridine (FdUrd) incubations. METHODS: Three human glioblastoma cell lines with different p53 expression were pre-treated with various FdUrd conditions. After different intervals, (125)I-IdUrd DNA incorporation was measured. Fluorescence-activated cell sorter cell cycle analysis was performed after identical intervals post FdUrd pre-treatment. RESULTS: The highest increase in (125)I-IdUrd DNA incorporation was induced by 1-h incubation with 1 muM FdUrd. Increase in radio-IdUrd DNA incorporation was greatest 16-24 h after FdUrd, reaching factors of >or=7.5 over baseline incorporation in the three cell lines. Furthermore, cell synchronisation in S phase was observed with a peak of >or=69.5% in the three cell lines at 16 and 24 h post FdUrd, corresponding to an increase of 2.5-4.1 over baseline. CONCLUSION: FdUrd-induced thymidine synthesis inhibition led to S-phase accumulation that was maximal after an interval of 16-24 h and time-correlated with the highest radio-IdUrd DNA incorporation. These observations might allow the rational design of an Auger radiation therapy targeting a maximal number of S-phase cells in single treatment cycles.


Subject(s)
Cell Cycle/drug effects , Cell Cycle/radiation effects , Floxuridine/administration & dosage , Glioblastoma/metabolism , Glioblastoma/pathology , Idoxuridine/pharmacokinetics , Iodine Radioisotopes/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Metabolic Clearance Rate/drug effects , Radiopharmaceuticals/pharmacokinetics
5.
Eur J Cancer ; 40(10): 1572-80, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15196542

ABSTRACT

(E)-2'-Deoxy-2'-(fluoromethylene) cytidine (FMdC), an inhibitor of ribonucleotide diphosphate reductase (RR), is a potent radiation-sensitiser acting through alterations in the deoxyribonucleoside triphosphate (dNTP) pool in the de novo pathway to DNA synthesis. The activity of thymidine kinase (TK), a key enzyme in the 'salvage pathway', is known to increase in response to a lowering of dATP induced by FMdC. Nucleoside analogues such as iododeoxyuridine (IdUrd) are incorporated into DNA after phosphorylation by TK. Radiation sensitisation by IdUrd depends on IdUrd incorporation. Therefore, we have investigated the radiosensitising effect of the combination of FMdC and IdUrd on WiDr (a human colon cancer cell-line) and compared it to the effect of either drug alone. We analysed the effects of FMdC and IdUrd on the dNTP pools by high-performance liquid chromatography, and measured whether the incorporation of IdUrd was increased by FMdC using a [(125)I]-IdUrd incorporation assay. The combination in vitro yielded radiation-sensitiser enhancement ratios of >2, significantly higher than those observed with FMdC or IdUrd alone. Isobologram analysis of the combination indicated a supra-additive effect. This significant increase in radiation sensitivity with the combination of FMdC and IdUrd could not be explained by changes in the dNTP pattern since the addition of IdUrd to FMdC did not further reduce the dATP. However, the increase in the radiation sensitivity of WiDr cells might be due to increased incorporation of IdUrd after FMdC treatment. Indeed, a specific and significant incorporation of IdUrd into DNA could be observed with the [(125)I]-IdUrd incorporation assay in the presence of 1 microM unlabelled IdUrd when combined with FMdC treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Deoxycytidine/analogs & derivatives , Deoxycytidine/metabolism , Idoxuridine/metabolism , Radiation-Sensitizing Agents/metabolism , Cell Line, Tumor , Deoxycytidine/administration & dosage , Dose-Response Relationship, Drug , Drug Interactions , Humans , Idoxuridine/administration & dosage , Radiation-Sensitizing Agents/administration & dosage
6.
Int J Cancer ; 110(1): 145-9, 2004 May 20.
Article in English | MEDLINE | ID: mdl-15054880

ABSTRACT

Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.


Subject(s)
Brain Neoplasms/radiotherapy , DNA/metabolism , Glioblastoma/radiotherapy , Idoxuridine/therapeutic use , Iodine Radioisotopes/therapeutic use , Thymidine/biosynthesis , Animals , Brain Neoplasms/metabolism , Floxuridine/therapeutic use , Glioblastoma/metabolism , Humans , Idoxuridine/pharmacokinetics , Mice , Neoplasm Transplantation , Tissue Distribution , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...