Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(8): e0236293, 2020.
Article in English | MEDLINE | ID: mdl-32760074

ABSTRACT

To divide replicated chromosomes equally between daughter cells, kinetochores must attach to microtubules emanating from opposite poles of the mitotic spindle (biorientation). An error correction mechanism facilitates this process by destabilizing erroneous kinetochore-microtubule attachments. Here we present a stochastic model of kinetochore-microtubule attachments, via an essential protein Ndc80 in budding yeast, Saccharomyces cerevisiae. Using the model, we calculate the stochastic dynamics of a pair of sister kinetochores as they transition among different attachment states. First of all, we determine the kinase-to-phosphatase balance point that maximizes the probability of biorientation, while starting from an erroneous attachment state. We find that the balance point is sensitive to the rates of microtubule-Ndc80 dissociation and derive an approximate analytical formula that defines the balance point. Secondly, we determine the probability of transition from low-tension amphitelic to monotelic attachment and find that, despite this probability being approximately 33%, biorientation can be achieved with high probability. Thirdly, we calculate the contribution of the geometrical orientation of sister kinetochores to the probability of biorientation and show that, in the absence of geometrical orientation, the biorientation error rate is much larger than that observed in experiments. Finally, we study the coupling of the error correction mechanism to the spindle assembly checkpoint by calculating the average binding of checkpoint-related proteins to the kinetochore during the error correction process.


Subject(s)
Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Models, Genetic , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , M Phase Cell Cycle Checkpoints/genetics , Stochastic Processes
2.
NPJ Syst Biol Appl ; 6(1): 11, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376972

ABSTRACT

Over the last 30 years, computational biologists have developed increasingly realistic mathematical models of the regulatory networks controlling the division of eukaryotic cells. These models capture data resulting from two complementary experimental approaches: low-throughput experiments aimed at extensively characterizing the functions of small numbers of genes, and large-scale genetic interaction screens that provide a systems-level perspective on the cell division process. The former is insufficient to capture the interconnectivity of the genetic control network, while the latter is fraught with irreproducibility issues. Here, we describe a hybrid approach in which the 630 genetic interactions between 36 cell-cycle genes are quantitatively estimated by high-throughput phenotyping with an unprecedented number of biological replicates. Using this approach, we identify a subset of high-confidence genetic interactions, which we use to refine a previously published mathematical model of the cell cycle. We also present a quantitative dataset of the growth rate of these mutants under six different media conditions in order to inform future cell cycle models.


Subject(s)
Cell Cycle/genetics , Saccharomyces cerevisiae/genetics , Cell Division/genetics , Computational Biology/methods , Epistasis, Genetic/genetics , Gene Expression Regulation, Fungal/genetics , Gene Regulatory Networks/genetics , High-Throughput Screening Assays/methods , Models, Theoretical , Saccharomyces cerevisiae Proteins/genetics
3.
Sci Rep ; 10(1): 5873, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245992

ABSTRACT

Laboratory strains, cell lines, and other genetic materials change hands frequently in the life sciences. Despite evidence that such materials are subject to mix-ups, contamination, and accumulation of secondary mutations, verification of strains and samples is not an established part of many experimental workflows. With the plummeting cost of next generation technologies, it is conceivable that whole genome sequencing (WGS) could be applied to routine strain and sample verification in the future. To demonstrate the need for strain validation by WGS, we sequenced haploid yeast segregants derived from a popular commercial mutant collection and identified several unexpected mutations. We determined that available bioinformatics tools may be ill-suited for verification and highlight the importance of finishing reference genomes for commonly used laboratory strains.


Subject(s)
Quality Control , Whole Genome Sequencing , Biomedical Research , Genome/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Saccharomyces cerevisiae/genetics , Whole Genome Sequencing/methods
4.
Front Genet ; 11: 174, 2020.
Article in English | MEDLINE | ID: mdl-32211027

ABSTRACT

In addition to their role in regulating transport across the nuclear envelope, increasing evidence suggests nuclear pore complexes (NPCs) function in regulating gene expression. For example, the induction of certain genes (e.g., yeast INO1) is accompanied by their movement from the nuclear interior to NPCs. As sumoylation has been linked to the regulation of chromatin spatial organization and transcriptional activity, we investigated the role of sumoylation in the expression and NPC recruitment of the INO1 gene. We observed that induction of INO1 is accompanied by both increased and decreased sumoylation of proteins associated with specific regions along the INO1 locus. Furthermore, we show that the E3 ligase Siz2/Nfi1 is required for targeting the INO1 locus to the NPC where it interacts with the SUMO isopeptidase Ulp1. Our data suggest that this interaction is required for both the association of INO1 with the NPC and for its normal expression. These results imply that sumoylation is a key regulator of INO1 targeting to the NPC, and a cycle of sumoylation and NPC-associated desumoylation events contribute to the regulation of INO1 expression.

5.
Trends Biotechnol ; 37(11): 1143-1146, 2019 11.
Article in English | MEDLINE | ID: mdl-31320118

ABSTRACT

The rapid pace of life sciences innovations and a growing list of nontraditional actors engaging in biological research make it challenging to develop appropriate policies to protect sensitive infrastructures. To address this challenge, we developed a five-day awareness program for security professionals, including laboratory work, site visits, and lectures.


Subject(s)
Security Measures/statistics & numerical data , Synthetic Biology/standards , Biological Science Disciplines/standards , Bioterrorism/prevention & control , Humans
6.
Curr Genet ; 65(2): 307-327, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30255296

ABSTRACT

The ease of performing both forward and reverse genetics in Saccharomyces cerevisiae, along with its stable haploid state and short generation times, has made this budding yeast the consummate model eukaryote for genetics. The major advantage of using budding yeast for reverse genetics is this organism's highly efficient homology-directed repair, allowing for precise genome editing simply by introducing DNA with homology to the chromosomal target. Although plasmid- and PCR-based genome editing tools are quite efficient, they depend on rare spontaneous DNA breaks near the target sequence. Consequently, they can generate only one genomic edit at a time, and the edit must be associated with a selectable marker. However, CRISPR/Cas technology is efficient enough to permit markerless and multiplexed edits in a single step. These features have made CRISPR/Cas popular for yeast strain engineering in synthetic biology and metabolic engineering applications, but it has not been widely employed for genetic screens. In this review, we critically examine different methods to generate multi-mutant strains in systematic genetic interaction screens and discuss the potential of CRISPR/Cas to supplement or improve on these methods.


Subject(s)
CRISPR-Cas Systems , Genome, Fungal , Genomics/methods , Yeasts/genetics , Diploidy , Gene Editing , Gene Library , Genetic Engineering/methods , Genetic Testing/methods , Mutation , Saccharomyces cerevisiae/genetics , Synthetic Lethal Mutations
7.
Bioinformatics ; 34(13): 2237-2244, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29432533

ABSTRACT

Motivation: Mathematical models of cellular processes can systematically predict the phenotypes of novel combinations of multi-gene mutations. Searching for informative predictions and prioritizing them for experimental validation is challenging since the number of possible combinations grows exponentially in the number of mutations. Moreover, keeping track of the crosses needed to make new mutants and planning sequences of experiments is unmanageable when the experimenter is deluged by hundreds of potentially informative predictions to test. Results: We present CrossPlan, a novel methodology for systematically planning genetic crosses to make a set of target mutants from a set of source mutants. We base our approach on a generic experimental workflow used in performing genetic crosses in budding yeast. We prove that the CrossPlan problem is NP-complete. We develop an integer-linear-program (ILP) to maximize the number of target mutants that we can make under certain experimental constraints. We apply our method to a comprehensive mathematical model of the protein regulatory network controlling cell division in budding yeast. We also extend our solution to incorporate other experimental conditions such as a delay factor that decides the availability of a mutant and genetic markers to confirm gene deletions. The experimental flow that underlies our work is quite generic and our ILP-based algorithm is easy to modify. Hence, our framework should be relevant in plant and animal systems as well. Availability and implementation: CrossPlan code is freely available under GNU General Public Licence v3.0 at https://github.com/Murali-group/crossplan. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Crosses, Genetic , Models, Theoretical , Mutation , Programming, Linear , Software , Algorithms , Cell Division/genetics , Gene Regulatory Networks , Models, Biological , Saccharomycetales/genetics
8.
Bioinformatics ; 33(19): 3134-3136, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28957495

ABSTRACT

SUMMARY: Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for sharing networks and visualizations. We present GraphSpace, a web-based platform that fosters team science by allowing collaborating research groups to easily store, interact with, layout and share networks. AVAILABILITY AND IMPLEMENTATION: Anyone can upload and share networks at http://graphspace.org. In addition, the GraphSpace code is available at http://github.com/Murali-group/graphspace if a user wants to run his or her own server. CONTACT: murali@cs.vt.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Systems Biology/methods , Algorithms , Computational Biology , Interdisciplinary Communication
9.
Mol Biol Cell ; 26(22): 3966-84, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26310445

ABSTRACT

The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1-S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1-S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model's simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network.


Subject(s)
Cell Cycle Checkpoints/physiology , Models, Genetic , Saccharomyces cerevisiae/cytology , Cell Cycle/genetics , Cell Cycle Checkpoints/genetics , Computer Simulation , G1 Phase/genetics , Promoter Regions, Genetic , Reproducibility of Results , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation
10.
Nucleic Acids Res ; 43(10): 4823-32, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25925571

ABSTRACT

Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of ∼2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects.


Subject(s)
Databases, Nucleic Acid , Gene Library , Plasmids/genetics , Molecular Sequence Annotation , Sequence Analysis, DNA , Synthetic Biology
11.
PLoS One ; 9(9): e107087, 2014.
Article in English | MEDLINE | ID: mdl-25210731

ABSTRACT

The use of microfluidics in live cell imaging allows the acquisition of dense time-series from individual cells that can be perturbed through computer-controlled changes of growth medium. Systems and synthetic biologists frequently perform gene expression studies that require changes in growth conditions to characterize the stability of switches, the transfer function of a genetic device, or the oscillations of gene networks. It is rarely possible to know a priori at what times the various changes should be made, and the success of the experiment is unknown until all of the image processing is completed well after the completion of the experiment. This results in wasted time and resources, due to the need to repeat the experiment to fine-tune the imaging parameters. To overcome this limitation, we have developed an adaptive imaging platform called GenoSIGHT that processes images as they are recorded, and uses the resulting data to make real-time adjustments to experimental conditions. We have validated this closed-loop control of the experiment using galactose-inducible expression of the yellow fluorescent protein Venus in Saccharomyces cerevisiae. We show that adaptive imaging improves the reproducibility of gene expression data resulting in more accurate estimates of gene network parameters while increasing productivity ten-fold.


Subject(s)
Bacterial Proteins/chemistry , Image Cytometry/methods , Luminescent Proteins/chemistry , Microfluidics/methods , Saccharomyces cerevisiae/cytology , Cell Tracking/methods , Gene Regulatory Networks/genetics , Synthetic Biology/methods , Systems Biology/methods
12.
Cell Cycle ; 12(19): 3203-18, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24013422

ABSTRACT

Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.


Subject(s)
Models, Biological , Cell Cycle Checkpoints , Cyclins/genetics , Cyclins/metabolism , Gene Regulatory Networks , In Situ Hybridization, Fluorescence , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
13.
Curr Biol ; 13(8): 654-8, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12699621

ABSTRACT

In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF Lte1p is located in the bud. This segregation helps keep Tem1p in its inactive GDP state until the spindle enters the neck. However, the checkpoint functions without Lte1p and apparently senses cytoplasmic microtubules in the mother/bud neck [7-9]. To investigate this mechanism, we examined mutants defective for septins, which compose a ring at the neck [10]. We found that the septin mutants sep7Delta and cdc10Delta are defective in the checkpoint. When movement of the spindle into the neck was delayed, mitotic exit occurred, inappropriately leaving both nuclei in the mother. In sep7Delta and cdc10Delta mutants, Lte1p is mislocalized to the mother. In sep7Delta, but not cdc10Delta, mutants, inappropriate mitotic exit depends on Lte1p. These results suggest that septins serve as a diffusion barrier for Lte1p, and that Cdc10p is needed for the septin ring to serve as a scaffold for a putative microtubule sensor.


Subject(s)
Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/physiology , Mitosis/physiology , Mutation/physiology , Saccharomyces cerevisiae/cytology , Spindle Apparatus/physiology , Cytoskeletal Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Microscopy, Fluorescence , Monomeric GTP-Binding Proteins/metabolism , Mutation/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...