Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 27(1): 76-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36523175

ABSTRACT

An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Phosphorylcholine , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor/drug effects , Colonic Neoplasms/drug therapy , Drug Synergism , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Tumor Microenvironment , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology
2.
Anal Chem ; 94(51): 18114-18120, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36514811

ABSTRACT

We report a new technique for the digital mapping of biomarkers in tissues based on desorption and counting intact gold nanoparticle (Au NP) tags using infrared laser ablation single-particle inductively coupled plasma mass spectrometry (IR LA SP ICP MS). In contrast to conventional UV laser ablation, Au NPs are not disintegrated during the desorption process due to their low absorption at 2940 nm. A mass spectrometer detects up to 83% of Au NPs. The technique is demonstrated on mapping a proliferation marker, nuclear protein Ki-67, in three-dimensional (3D) aggregates of colorectal carcinoma cells, and the results are compared with confocal fluorescence microscopy and UV LA ICP MS. Precise counting of 20 nm Au NPs with a single-particle detection limit in each pixel by the new approach generates sharp distribution maps of a specific biomarker in the tissue. Advantageously, the desorption of Au NPs from regions outside the tissue is strongly suppressed. The developed methodology promises multiplex mapping of low-abundant biomarkers in numerous biological and medical applications using multielemental mass spectrometers.


Subject(s)
Laser Therapy , Metal Nanoparticles , Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Mass Spectrometry/methods , Lasers
3.
Biomed Pharmacother ; 153: 113465, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076577

ABSTRACT

Drug efficacy determined in preclinical research is difficult to transfer to clinical practice. This is mainly due to the use of oversimplified models omitting the effect of the tumor microenvironment and the presence of various cell types participating in the formation of tumors in vivo. In this study, we used robust three-dimensional models including spheroids grown from colon cancer cell lines and organotypic cultures prepared from the colorectal carcinoma tissue to test novel therapeutic strategies. We developed a multi-modal approach combining brightfield and fluorescence microscopy for evaluating drug effects on organotypic cultures. Combined treatment with 5-fluorouracil and disulfiram/copper efficiently eliminated cancer cells in these 3D models. Moreover, disulfiram/copper down-regulated the expression of markers associated with 5-fluorouracil resistance, such as thymidylate synthase and CD133/CD44. Thus, we propose combined therapy of 5-fluorouracil and disulfiram/copper for further testing as a treatment for colorectal carcinoma. In addition, we show that organotypic cultures are suitable models for anti-cancer drug testing.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Copper/pharmacology , Copper/therapeutic use , Disulfiram/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Spheroids, Cellular/pathology , Tumor Microenvironment
4.
Anal Chem ; 94(25): 8928-8936, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35713244

ABSTRACT

We present a novel combination of a metal oxide laser ionization mass spectrometry imaging (MOLI MSI) technique with off-line lipid derivatization by ozone for the detection of fatty acids (FA) and their carbon-carbon double bond (C═C) positional isomers in biological tissues. MOLI MSI experiments were realized with CeO2 and TiO2 nanopowders using a vacuum matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer in the negative mode. The catalytic properties of these metal oxides allow FA cleavage from phospholipids under UV laser irradiation. At the same time, fragile ozonides produced at the sites of unsaturation decomposed, yielding four diagnostic ions specific for the C═C positions. Advantageously, two MOLI MSI runs from a single tissue sprayed with the metal oxide suspension were performed. The first run prior to ozone derivatization revealed the distribution of FAs, while the second run after the reaction with ozone offered additional information about FA C═C isomers. The developed procedure was demonstrated on MSI of a normal mouse brain and human colorectal cancer tissues uncovering the differential distribution of FAs down to the isomer level. Compared to the histological analysis, MOLI MSI showed the distinct distribution of specific FAs in different functional parts of the brain and in healthy and cancer tissues pointing toward its biological relevance. The developed technique can be directly adopted by laboratories with MALDI TOF analyzers and help in the understanding of the local FA metabolism in tissues.


Subject(s)
Fatty Acids , Ozone , Animals , Carbon/chemistry , Fatty Acids/analysis , Lasers , Mice , Oxides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...