Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293422, 2023.
Article in English | MEDLINE | ID: mdl-37917606

ABSTRACT

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.


Subject(s)
Mutation, Missense , Serine , Humans , Serine/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Tumor Suppressor Proteins/genetics , DNA Repair/genetics , Recombinational DNA Repair , Genetic Predisposition to Disease
2.
PLoS Genet ; 19(8): e1010739, 2023 08.
Article in English | MEDLINE | ID: mdl-37578980

ABSTRACT

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.


Subject(s)
BRCA1 Protein , Recombinational DNA Repair , Female , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , DNA , DNA Breaks, Double-Stranded , Genetic Predisposition to Disease , Mutation, Missense , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics
3.
bioRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090572

ABSTRACT

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1 . AUTHOR SUMMARY: Most missense substitutions in BRCA1 are variants of unknown significance (VUS), and individuals with a VUS in BRCA1 cannot know from genetic information alone whether this variant predisposes to breast or ovarian cancer. We apply a multiplexed functional assay for homology directed repair of DNA double strand breaks to assess variant impact on this important BRCA1 protein function. We analyzed 2172 variants in the amino-terminus of BRCA1 and demonstrate that variants that are known as pathogenic have a loss of function in the DNA repair assay. Conversely, variants that are known to be benign are functionally normal in the multiplexed assay. We suggest that these functional determinations of BRCA1 variants can be used to augment the information that clinical cancer geneticists provide to patients who have a VUS in BRCA1 .

4.
Am J Hum Genet ; 109(4): 618-630, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35196514

ABSTRACT

Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.


Subject(s)
BRCA1 Protein , Breast Neoplasms , DNA Breaks, Double-Stranded , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , DNA , DNA Repair , Female , Humans , Mutation, Missense
5.
PLoS Genet ; 15(3): e1008049, 2019 03.
Article in English | MEDLINE | ID: mdl-30925164

ABSTRACT

The BARD1 protein, which heterodimerizes with BRCA1, is encoded by a known breast cancer susceptibility gene. While several BARD1 variants have been identified as pathogenic, many more missense variants exist that do not occur frequently enough to assign a clinical risk. In this paper, whole exome sequencing of over 10,000 cancer samples from 33 cancer types identified from somatic mutations and loss of heterozygosity in tumors 76 potentially cancer-associated BARD1 missense and truncation variants. These variants were tested in a functional assay for homology-directed repair (HDR), as HDR deficiencies have been shown to correlate with clinical pathogenicity for BRCA1 variants. From these 76 variants, 4 in the ankyrin repeat domain and 5 in the BRCT domain were found to be non-functional in HDR. Two known benign variants were found to be functional in HDR, and three known pathogenic variants were non-functional, supporting the notion that the HDR assay can be used to predict the clinical risk of BARD1 variants. The identification of HDR-deficient variants in the ankyrin repeat domain indicates there are DNA repair functions associated with this domain that have not been closely examined. In order to examine whether BARD1-associated loss of HDR function results in DNA damage sensitivity, cells expressing non-functional BARD1 variants were treated with ionizing radiation or cisplatin. These cells were found to be more sensitive to DNA damage, and variations in the residual HDR function of non-functional variants did not correlate with variations in sensitivity. These findings improve the understanding of BARD1 functional domains in DNA repair and support that this functional assay is useful for predicting the cancer association of BARD1 variants.


Subject(s)
Neoplasms/genetics , Recombinational DNA Repair/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , BRCA1 Protein/metabolism , Cats , DNA Damage , DNA Repair/genetics , Dogs , Female , Humans , Mice , Mutation, Missense/genetics , Sequence Alignment , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Exome Sequencing
6.
Mol Cell ; 73(2): 195-196, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30658107

ABSTRACT

PARP inhibitor (PARPi) therapy targets BRCA1/2 mutant tumor cells, but acquired resistance limits its effectiveness. In this issue of Molecular Cell, Marzio et al. (2019) identify a novel mechanism of resistance to PARPi through regulation of RAD51 protein stability via an SCF ubiquitin ligase dependent on EMI1.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , Drug Resistance, Neoplasm/drug effects , F-Box Proteins , Humans , Rad51 Recombinase
7.
Am J Hum Genet ; 103(4): 498-508, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30219179

ABSTRACT

Loss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression. Here, we describe a multiplex HDR reporter assay for concurrently measuring the effects of hundreds of variants of BRCA1 for their role in DNA repair. Using this assay, we characterized the effects of 1,056 amino acid substitutions in the first 192 residues of BRCA1. Benchmarking these results against variants with known effects on DNA repair function or on cancer predisposition, we demonstrate accurate discrimination of loss-of-function versus benign missense variants. We anticipate that this assay can be used to functionally characterize BRCA1 missense variants at scale, even before the variants are observed in results from genetic testing.


Subject(s)
BRCA1 Protein/genetics , DNA Repair/genetics , Mutation, Missense/genetics , Cell Line, Tumor , DNA/genetics , DNA Breaks, Double-Stranded , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , HeLa Cells , Humans , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...