Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659926

ABSTRACT

Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.

2.
J Dev Biol ; 10(1)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35076532

ABSTRACT

Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member syg-2 in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that syg-2 and its cognate Ig family member syg-1 appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in syg-2 or syg-1 selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in syg-1 or syg-2 could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2's essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in syg-2 mutants. We found syg-2 mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.

3.
Proc Natl Acad Sci U S A ; 117(6): 2923-2929, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974309

ABSTRACT

Small heat shock proteins (sHSPs) are a class of ATP-independent molecular chaperones that play vital roles in maintaining protein solubility and preventing aberrant protein aggregation. They form highly dynamic, polydisperse oligomeric ensembles and contain long intrinsically disordered regions. Experimental challenges posed by these properties have greatly impeded our understanding of sHSP structure and mechanism of action. Here we characterize interactions between the human sHSP HspB1 (Hsp27) and microtubule-associated protein tau, which is implicated in multiple dementias, including Alzheimer's disease. We show that tau binds both to a well-known binding groove within the structured alpha-crystallin domain (ACD) and to sites within the enigmatic, disordered N-terminal region (NTR) of HspB1. However, only interactions involving the NTR lead to productive chaperone activity, whereas ACD binding is uncorrelated with chaperone function. The tau-binding groove in the ACD also binds short hydrophobic regions within HspB1 itself, and HspB1 mutations that disrupt these intrinsic ACD-NTR interactions greatly enhance chaperone activity toward tau. This leads to a mechanism in which the release of the disordered NTR from a binding groove on the ACD enhances chaperone activity toward tau. The study advances understanding of the mechanisms by which sHSPs achieve their chaperone activity against amyloid-forming clients and how cells defend against pathological tau aggregation. Furthermore, the resulting mechanistic model points to ways in which sHSP chaperone activity may be increased, either by native factors within the cell or by therapeutic intervention.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , tau Proteins/metabolism , Heat-Shock Proteins/genetics , Humans , Models, Molecular , Molecular Chaperones/genetics , Protein Binding , Protein Domains , alpha-Crystallins/metabolism , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...