Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 304(1): 78-89, 2021 01.
Article in English | MEDLINE | ID: mdl-32363786

ABSTRACT

Dogs have been bred for different sizes and functions, which can affect their locomotor biomechanics. As quadrupeds, dogs must distribute their mass between fore and hind legs when standing. The mass distribution in dogs was studied to determine if the proportion of supported mass on each limb couplet is dependent on body size. A total of 552 dogs from 123 breeds ranging in size from Chihuahua to Mastiff were examined. Each dog was weighed on a digital scale while standing, alternating foreleg, and hind leg support. The overall "grand" mean proportion of mass on the forelegs to the total mass was 60.4% (range: 47.6-74.4%). The data set indicated no significant change in the ratio with total mass but there was a significant difference by sex. When separated into American Kennel Club categories, no group was notably different from the grand mean or from each other, but when sex was also considered, there was a significant difference that was not specifically discerned by post hoc analysis. The mean for female Hounds was notably below the grand mean. For clades based on genetics, the mean for European origin mastiffs was notably greater than the grand mean and significantly different from UK origin herders and coursers. The mass of the head, chest, and musculature for propulsion could explain the mass support differential. Mass distribution and terrestrial locomotion in dogs shows substantial variation among breeds.


Subject(s)
Body Size/physiology , Locomotion/physiology , Posture/physiology , Animals , Biomechanical Phenomena/physiology , Dogs , Species Specificity , Weight-Bearing
2.
Curr Zool ; 66(5): 575-588, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33293935

ABSTRACT

Key innovations may allow lineages access to new resources and facilitate the invasion of new adaptive zones, potentially influencing diversification patterns. Many studies have focused on the impact of key innovations on speciation rates, but far less is known about how they influence phenotypic rates and patterns of ecomorphological diversification. We use the repeated evolution of pharyngognathy within acanthomorph fishes, a commonly cited key innovation, as a case study to explore the predictions of key innovation theory. Specifically, we investigate whether transitions to pharyngognathy led to shifts in the rate of phenotypic evolution, as well as shifts and/or expansion in the occupation of morphological and dietary space, using a dataset of 8 morphological traits measured across 3,853 species of Acanthomorpha. Analyzing the 6 evolutionarily independent pharyngognathous clades together, we found no evidence to support pharyngognathy as a key innovation; however, comparisons between individual pharyngognathous lineages and their sister clades did reveal some consistent patterns. In morphospace, most pharyngognathous clades cluster in areas that correspond to deeper-bodied morphologies relative to their sister clades, whereas occupying greater areas in dietary space that reflects a more diversified diet. Additionally, both Cichlidae and Labridae exhibited higher univariate rates of phenotypic evolution compared with their closest relatives. However, few of these results were exceptional relative to our null models. Our results suggest that transitions to pharyngognathy may only be advantageous when combined with additional ecological or intrinsic factors, illustrating the importance of accounting for lineage-specific effects when testing key innovation hypotheses. Moreover, the challenges we experienced formulating informative comparisons, despite the ideal evolutionary scenario of multiple independent evolutionary origins of pharyngognathous clades, illustrates the complexities involved in quantifying the impact of key innovations. Given the issues of lineage specific effects and rate heterogeneity at macroevolutionary scales we observed, we suggest a reassessment of the expected impacts of key innovations may be warranted.

3.
J Morphol ; 280(9): 1323-1331, 2019 09.
Article in English | MEDLINE | ID: mdl-31246347

ABSTRACT

Dorso-ventral oscillations of cetacean caudal flukes generate lift-based thrust for swimming. Movements of the flukes are actuated by epaxial and hypaxial muscles through caudal tendons inserting onto vertebrate in the peduncle. To determine if the caudal tendons in the peduncle affect the flexibility of the flukes, we must understand how the tendons from axial muscles insert onto the caudal vertebrate. The purpose of this study was to provide a detailed description of the various tendons within the cetacean peduncle with regard to their role in swimming and flexibility. Dissection of the peduncle and flukes of multiple odontocete species showed that there were two distinct epaxial tendon sets within the peduncle: (1) extensor caudae medialis tendon (ECM) and (2) extensor caudae lateralis tendon (ECL). There is one distinct hypaxial tendon set, the medial tendon of the hypaxialis lumborum (MHL). The ECM and MHL tendons inserted serially onto caudal vertebrae while the ECL inserted exclusively onto the terminal vertebrae posterior to the fluke insertion. It is typical that tendons insert onto bone, however, the connection to the core fibrous layer of the flukes suggests an element of active control of the flexibility of the flukes via the axial muscles. Tension from muscular contraction transmitted through the tendons could affect both spanwise and chordwise flexibility. Changing flexibility could modulate thrust and efficiency over an extended operation range of swimming speeds in cetaceans.


Subject(s)
Cetacea/anatomy & histology , Cetacea/physiology , Orientation , Pliability , Tendons/anatomy & histology , Tendons/physiology , Animals , Dissection , Movement , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...