Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766072

ABSTRACT

Protein retention expansion microscopy (ExM) retains genetically encoded fluorescent proteins or antibody-conjugated fluorescent probes in fixed tissue and isotropically expands the tissue through a swellable polymer network to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite numerous advantages ExM brings to biological studies, the full protocol is time-consuming and can take multiple days to complete. Here, we adapted the ExM protocol to the vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave-assisted protocol to reduce the workflow from days to hours. In addition to the significantly accelerated processing time, our microwave-assisted ExM (M/WExM) protocol maintains the superior resolution and signal-to-noise ratio of the original ExM protocol. Furthermore, the M/WExM protocol yields higher magnitude of expansion, suggesting that in addition to accelerating the process through increased diffusion rate of reagents, microwave radiation may also facilitate the expansion process. To demonstrate the applicability of this method to other specimens and protocols, we adapted the microwave-accelerated protocol to whole mount adult brain tissue of Drosophila melanogaster fruit flies, and successfully reduced the total processing time of a widely-used Drosophila IHC-ExM protocol from 6 days to 2 days. Our results demonstrate that with appropriate adjustment of the microwave parameters (wattage, pulse duration, interval, and number of cycles), this protocol can be readily adapted to different model organisms and tissue types to greatly increase the efficiency of ExM experiments.

2.
Cells ; 11(21)2022 10 31.
Article in English | MEDLINE | ID: mdl-36359844

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease. Skeletal muscles and motor neurons (MNs) degenerate. ALS is a complex disease involving many genes in multiple tissues, the environment, cellular metabolism, and lifestyles. We hypothesized that epigenetic anomalies in DNA and RNA occur in ALS and examined this idea in: (1) mouse models of ALS, (2) human ALS, and (3) mouse ALS with therapeutic targeting of DNA methylation. Human superoxide dismutase-1 (hSOD1) transgenic (tg) mice were used. They expressed nonconditionally wildtype (WT) and the G93A and G37R mutant variants or skeletal muscle-restricted WT and G93A and G37R mutated forms. Age-matched non-tg mice were controls. hSOD1 mutant mice had increased DNA methyltransferase enzyme activity in spinal cord and skeletal muscle and increased 5-methylcytosine (5mC) levels. Genome-wide promoter CpG DNA methylation profiling in skeletal muscle of ALS mice identified hypermethylation notably in cytoskeletal genes. 5mC accumulated in spinal cord MNs and skeletal muscle satellite cells in mice. Significant increases in DNA methyltransferase-1 (DNMT1) and DNA methyltransferase-3A (DNMT3A) levels occurred in spinal cord nuclear and chromatin bound extracts of the different hSOD1 mouse lines. Mutant hSOD1 interacted with DNMT3A in skeletal muscle. 6-methyladenosine (6mA) RNA methylation was markedly increased or decreased in mouse spinal cord depending on hSOD1-G93A model, while fat mass and obesity associated protein was depleted and methyltransferase-like protein 3 was increased in spinal cord and skeletal muscle. Human ALS spinal cord had increased numbers of MNs and interneurons with nuclear 5mC, motor cortex had increased 5mC-positive neurons, while 6mA was severely depleted. Treatment of hSOD1-G93A mice with DNMT inhibitor improved motor function and extended lifespan by 25%. We conclude that DNA and RNA epigenetic anomalies are prominent in mouse and human ALS and are potentially targetable for disease-modifying therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA Methylation , Methyltransferases , RNA Processing, Post-Transcriptional , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , DNA/chemistry , DNA/metabolism , DNA Methylation/genetics , Methylation , Methyltransferases/metabolism , Mice, Transgenic , Muscle, Skeletal/metabolism , RNA/chemistry , RNA/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...