Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1819): 20190666, 2021 03.
Article in English | MEDLINE | ID: mdl-33423624

ABSTRACT

Information about social partners is innately valuable to primates. Decisions about which sources of information to consume are highly naturalistic but also complex and place unusually strong demands on the brain's decision network. In particular, both the orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) play key roles in decision making and social behaviour, suggesting a likely role in social information-seeking as well. To test this idea, we developed a 'channel surfing' task in which monkeys were shown a series of 5 s video clips of conspecifics engaged in natural behaviours at a field site. Videos were annotated frame-by-frame using an ethogram of species-typical behaviours, an important source of social information. Between each clip, monkeys were presented with a choice between targets that determined which clip would be seen next. Monkeys' gaze during playback indicated differential engagement depending on what behaviours were presented. Neurons in both OFC and LPFC responded to choice targets and to video, and discriminated a subset of the behaviours in the ethogram during video viewing. These findings suggest that both OFC and LPFC are engaged in processing social information that is used to guide dynamic information-seeking decisions. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.


Subject(s)
Cognition , Macaca mulatta/physiology , Macaca mulatta/psychology , Neurons/physiology , Prefrontal Cortex/physiology , Reward , Social Behavior , Animals , Male , Social Interaction
2.
Cereb Cortex ; 29(1): 77-90, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29186348

ABSTRACT

Attending to a visual stimulus increases its detectability, even if gaze is directed elsewhere. This covert attentional selection is known to enhance spiking across many brain areas, including the primary visual cortex (V1). Here we investigate the temporal dynamics of attention-related spiking changes in V1 of macaques performing a task that separates attentional selection from the onset of visual stimulation. We found that preceding attentional enhancement there was a sharp, transient decline in spiking following presentation of an attention-guiding cue. This disruption of V1 spiking was not observed in a task-naïve subject that passively observed the same stimulus sequence, suggesting that sensory activation is insufficient to cause suppression. Following this suppression, attended stimuli evoked more spiking than unattended stimuli, matching previous reports of attention-related activity in V1. Laminar analyses revealed a distinct pattern of activation in feedback-associated layers during both the cue-induced suppression and subsequent attentional enhancement. These findings suggest that top-down modulation of V1 spiking can be bidirectional and result in either suppression or enhancement of spiking responses.


Subject(s)
Action Potentials/physiology , Attention/physiology , Cues , Photic Stimulation/methods , Reaction Time/physiology , Visual Cortex/physiology , Animals , Macaca mulatta , Macaca radiata , Male , Random Allocation
4.
R Soc Open Sci ; 2(6): 150155, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26543589

ABSTRACT

Many prey species exhibit defensive traits to decrease their chances of predation. Conspicuous eye-spots, concentric rings of contrasting colours, are one type of defensive trait that some species exhibit to deter predators. We examined the function of eye-spots in Lepidoptera to determine whether they are effective at deterring predators because they resemble eyes ('eye mimicry hypothesis') or are highly salient ('conspicuous signal hypothesis'). We recorded the gaze behaviour of men and women as they viewed natural images of butterflies and moths as well as images in which the eye-spots of these insects were modified. The eye-spots were modified by removing them, scrambling their colours, or replacing them with elliptical or triangular shapes that had either dark or light centres. Participants were generally more likely to look at, spend more time looking at and be faster to first fixate the eye-spots of butterflies and moths that were natural compared with ones that were modified, including the elliptical eye-spots with dark centres that most resembled eyes as well as the scrambled eye-spots that had the same contrast as the natural eye-spots. Participants were most likely to look at eye-spots that were numerous, had a large surface area and were located close to the insects' heads. Participants' pupils were larger when viewing eye-spots compared with the rest of the insects' body, suggesting a greater arousal when viewing eye-spots. Our results provide some support for the conspicuous signal hypothesis (and minimal support for the eye mimicry hypothesis) and suggest that eye-spots may be effective at deterring predators because they are highly conspicuous signals that draw attention.

5.
Cognition ; 142: 247-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26056747

ABSTRACT

The approximate number system (ANS) subserves estimation of the number of items in a set. Typically, ANS function is assessed by requiring participants to compare the number of dots in two arrays. Accuracy is determined by the numerical ratio of the sets being compared, and each participant's Weber fraction (w) provides a quantitative index of ANS acuity. When making numerical comparisons, however, performance is also influenced by non-numerical features of the stimuli, such as the size and spacing of dots. Current models of numerosity comparison do not account for these effects and consequently lead to different estimates of w depending on the methods used to control for non-numerical features. Here we proffer a new model that teases apart the effects of ANS acuity from the effects of non-numerical stimulus features. The result is an estimate of w that is a more theoretically valid representation of numerical acuity and novel terms that denote the degree to which a participant's perception of number is affected by non-numerical features. We tested this model in a sample of 20 adults and found that, by correctly attributing errors due to non-numerical stimulus features, the w obtained was more reliable across different stimulus conditions. We found that although non-numerical features biased numerosity discriminations in all participants, number was the primary feature driving discriminations in most of them. Our findings support the idea that, while numerosity is a distinct visual quantity, the internal representation of number is tightly bound to the representation of other magnitudes. This tool for identifying the different effects of the numerical and non-numerical features of a stimulus has important implications not only for the behavioral investigation of the ANS, but also for the collection and analyses of neural data sets associated with ANS function.


Subject(s)
Judgment , Adult , Female , Humans , Male , Mathematics , Models, Psychological , Photic Stimulation , Young Adult
6.
Proc Natl Acad Sci U S A ; 110 Suppl 2: 10387-94, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23754410

ABSTRACT

A neuroethological approach to human and nonhuman primate behavior and cognition predicts biological specializations for social life. Evidence reviewed here indicates that ancestral mechanisms are often duplicated, repurposed, and differentially regulated to support social behavior. Focusing on recent research from nonhuman primates, we describe how the primate brain might implement social functions by coopting and extending preexisting mechanisms that previously supported nonsocial functions. This approach reveals that highly specialized mechanisms have evolved to decipher the immediate social context, and parallel circuits have evolved to translate social perceptual signals and nonsocial perceptual signals into partially integrated social and nonsocial motivational signals, which together inform general-purpose mechanisms that command behavior. Differences in social behavior between species, as well as between individuals within a species, result in part from neuromodulatory regulation of these neural circuits, which itself appears to be under partial genetic control. Ultimately, intraspecific variation in social behavior has differential fitness consequences, providing fundamental building blocks of natural selection. Our review suggests that the neuroethological approach to primate behavior may provide unique insights into human psychopathology.


Subject(s)
Animal Communication , Biological Evolution , Models, Biological , Nerve Net/physiology , Primates/physiology , Social Behavior , Animals , Humans , Selection, Genetic/physiology
7.
Curr Opin Neurobiol ; 22(6): 982-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22902613

ABSTRACT

A neuroethological approach to decision-making considers the effect of evolutionary pressures on neural circuits mediating choice. In this view, decision systems are expected to enhance fitness with respect to the local environment, and particularly efficient solutions to specific problems should be conserved, expanded, and repurposed to solve other problems. Here, we discuss basic prerequisites for a variety of decision systems from this viewpoint. We focus on two of the best-studied and most widely represented decision problems. First, we examine patch leaving, a prototype of environmentally based switching between action patterns. Second, we consider social information seeking, a process resembling foraging with search costs. We argue that while the specific neural solutions to these problems sometimes differ across species, both the problems themselves and the algorithms instantiated by biological hardware are repeated widely throughout nature. The behavioral and mathematical study of ubiquitous decision processes like patch leaving and social information seeking thus provides a powerful new approach to uncovering the fundamental design structure of nervous systems.


Subject(s)
Biological Evolution , Decision Making/physiology , Ethology/methods , Models, Neurological , Neurobiology/methods , Animals , Environment , Humans , Social Behavior
8.
Science ; 336(6078): 168-9, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22499933
9.
Article in English | MEDLINE | ID: mdl-20802856

ABSTRACT

Spatial patterns of spontaneous neural activity at rest have previously been associated with specific networks in the brain, including those pertaining to the functional architecture of the primary visual cortex (V1). However, despite the prominent anatomical differences between cortical layers, little is known about the laminar pattern of spontaneous activity in V1. We address this topic by investigating the amplitude and coherence of ongoing local field potential (LFP) signals measured from different layers in V1 of macaque monkeys during rest and upon presentation of a visual stimulus. We used a linear microelectrode array to measure LFP signals at multiple, evenly spaced positions throughout the cortical thickness. Analyzing both the mean LFP amplitudes and between-contact LFP coherences, we identified two distinct zones of activity, roughly corresponding to superficial and deep layers, divided by a sharp transition near the bottom of layer 4. The LFP signals within each laminar zone were highly coherent, whereas those between zones were not. This functional compartmentalization was found not only during rest, but also when the receptive field was stimulated during a visual task. These results demonstrate the existence of distinct superficial and deep functional domains of coherent LFP activity in V1 that may reflect the intrinsic interplay of V1 microcircuitry with cortical and subcortical targets, respectively.

10.
Physiol Biochem Zool ; 83(2): 207-14, 2010.
Article in English | MEDLINE | ID: mdl-20105071

ABSTRACT

Water exchange of squamate eggs is driven by the difference between the water potentials of eggs and of their nest environment. While osmotic potential is generally assumed to dominate the net water potential of eggs, resistance of the eggshell to stretching also affects egg water potential. We therefore determined osmotic potentials and pressure potentials (mechanical pressure) of eggs of the veiled chameleon Chamaeleo calyptratus over the course of incubation. Because embryos are diapausing gastrulae when eggs are laid and diapause persists several months, the water potential of eggs can be evaluated before it is influenced by the developing embryo. Water uptake during the first 2 wk of incubation was rapid as a result of the large difference between the total water potential of the egg (-848 kPa) and that of its incubation substrate. After about 2 wk, water potential of the egg stabilized at -460 kPa. By day 80 of incubation, the developing embryo and allantois affected water exchange of the egg. The allantoic fluid was initially very dilute, but its osmotic potential decreased to about -200 kPa by the end of incubation. Pressure potential of the egg averaged 25 kPa, with no systematic trend during incubation. The pressure potential exerted by the eggshell reduced the difference between the water potential of the egg and the water potential of the environment, that is, the ability of eggs to take up water. At the time of oviposition, this effect was relatively small, producing a 4%-6% reduction in water potential difference. Once the yolk osmotic potential stabilized, however, the reduction was 12% or more. This observation means that the dynamics of water uptake by squamate eggs cannot be fully understood without consideration of the pressure that is exerted on the contents of eggs by their shells.


Subject(s)
Lizards/physiology , Osmotic Pressure/physiology , Ovum/physiology , Allantois/physiology , Animals , Egg Shell/physiology , Egg Yolk/physiology , Embryo, Nonmammalian/physiology , Ovum/metabolism , Pressure , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...