Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Med Image Anal ; 91: 103034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984127

ABSTRACT

Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. Statistical analysis of shapes requires consistent shape representation across samples in shape cohort. Establishing this representation entails a processing pipeline that includes anatomy segmentation, image re-sampling, shape-based registration, and non-linear, iterative optimization. These shape representations are then used to extract low-dimensional shape descriptors that are anatomically relevant to facilitate subsequent statistical analyses in different applications. However, the current process of obtaining these shape descriptors from imaging data relies on human and computational resources, requiring domain expertise for segmenting anatomies of interest. Moreover, this same taxing pipeline needs to be repeated to infer shape descriptors for new image data using a pre-trained/existing shape model. Here, we propose DeepSSM, a deep learning-based framework for learning the functional mapping from images to low-dimensional shape descriptors and their associated shape representations, thereby inferring statistical representation of anatomy directly from 3D images. Once trained using an existing shape model, DeepSSM circumvents the heavy and manual pre-processing and segmentation required by classical models and significantly improves the computational time, making it a viable solution for fully end-to-end shape modeling applications. In addition, we introduce a model-based data-augmentation strategy to address data scarcity, a typical scenario in shape modeling applications. Finally, this paper presents and analyzes two different architectural variants of DeepSSM with different loss functions using three medical datasets and their downstream clinical application. Experiments showcase that DeepSSM performs comparably or better to the state-of-the-art SSM both quantitatively and on application-driven downstream tasks. Therefore, DeepSSM aims to provide a comprehensive blueprint for deep learning-based image-to-shape models.


Subject(s)
Deep Learning , Humans , Imaging, Three-Dimensional/methods , Models, Statistical , Image Processing, Computer-Assisted/methods
2.
Front Bioeng Biotechnol ; 11: 1086234, 2023.
Article in English | MEDLINE | ID: mdl-36777257

ABSTRACT

Numerous clinical investigations require understanding changes in anatomical shape over time, such as in dynamic organ cycle characterization or longitudinal analyses (e.g., for disease progression). Spatiotemporal statistical shape modeling (SSM) allows for quantifying and evaluating dynamic shape variation with respect to a cohort or population of interest. Existing data-driven SSM approaches leverage information theory to capture population-level shape variations by learning correspondence-based (landmark) representations of shapes directly from data using entropy-based optimization schemes. These approaches assume sample independence and thus are unsuitable for sequential dynamic shape observations. Previous methods for adapting entropy-based SSM optimization schemes for the spatiotemporal case either utilize a cross-sectional design (ignoring within-subject correlation) or impose other limiting assumptions, such as the linearity of shape dynamics. Here, we present a principled approach to spatiotemporal SSM that relaxes these assumptions to correctly capture population-level shape variation over time. We propose to incorporate modeling the underlying time dependency into correspondence optimization via a regularized principal component polynomial regression. This approach is flexible enough to capture non-linear temporal dynamics while encoding population-specific spatial regularity. We demonstrate our method's efficacy on synthetic data and left atrium segmented from cardiac MRI scans. Our approach better captures the population modes of variation and a statistically significant time dependency than existing methods.

3.
Shape Med Imaging (2023) ; 14350: 157-172, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38745942

ABSTRACT

Statistical shape modeling (SSM) is an enabling quantitative tool to study anatomical shapes in various medical applications. However, directly using 3D images in these applications still has a long way to go. Recent deep learning methods have paved the way for reducing the substantial preprocessing steps to construct SSMs directly from unsegmented images. Nevertheless, the performance of these models is not up to the mark. Inspired by multiscale/multiresolution learning, we propose a new training strategy, progressive DeepSSM, to train image-to-shape deep learning models. The training is performed in multiple scales, and each scale utilizes the output from the previous scale. This strategy enables the model to learn coarse shape features in the first scales and gradually learn detailed fine shape features in the later scales. We leverage shape priors via segmentation-guided multi-task learning and employ deep supervision loss to ensure learning at each scale. Experiments show the superiority of models trained by the proposed strategy from both quantitative and qualitative perspectives. This training methodology can be employed to improve the stability and accuracy of any deep learning method for inferring statistical representations of anatomies from medical images and can be adopted by existing deep learning methods to improve model accuracy and training stability.

4.
Stat Atlases Comput Models Heart ; 13593: 143-156, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37103466

ABSTRACT

Clinical investigations of anatomy's structural changes over time could greatly benefit from population-level quantification of shape, or spatiotemporal statistic shape modeling (SSM). Such a tool enables characterizing patient organ cycles or disease progression in relation to a cohort of interest. Constructing shape models requires establishing a quantitative shape representation (e.g., corresponding landmarks). Particle-based shape modeling (PSM) is a data-driven SSM approach that captures population-level shape variations by optimizing landmark placement. However, it assumes cross-sectional study designs and hence has limited statistical power in representing shape changes over time. Existing methods for modeling spatiotemporal or longitudinal shape changes require predefined shape atlases and pre-built shape models that are typically constructed cross-sectionally. This paper proposes a data-driven approach inspired by the PSM method to learn population-level spatiotemporal shape changes directly from shape data. We introduce a novel SSM optimization scheme that produces landmarks that are in correspondence both across the population (inter-subject) and across time-series (intra-subject). We apply the proposed method to 4D cardiac data from atrial-fibrillation patients and demonstrate its efficacy in representing the dynamic change of the left atrium. Furthermore, we show that our method outperforms an image-based approach for spatiotemporal SSM with respect to a generative time-series model, the Linear Dynamical System (LDS). LDS fit using a spatiotemporal shape model optimized via our approach provides better generalization and specificity, indicating it accurately captures the underlying time-dependency.

5.
Med Image Comput Comput Assist Interv ; 13432: 474-484, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37011237

ABSTRACT

Statistical shape modeling (SSM) directly from 3D medical images is an underutilized tool for detecting pathology, diagnosing disease, and conducting population-level morphology analysis. Deep learning frameworks have increased the feasibility of adopting SSM in medical practice by reducing the expert-driven manual and computational overhead in traditional SSM workflows. However, translating such frameworks to clinical practice requires calibrated uncertainty measures as neural networks can produce over-confident predictions that cannot be trusted in sensitive clinical decision-making. Existing techniques for predicting shape with aleatoric (data-dependent) uncertainty utilize a principal component analysis (PCA) based shape representation computed in isolation of the model training. This constraint restricts the learning task to solely estimating pre-defined shape descriptors from 3D images and imposes a linear relationship between this shape representation and the output (i.e., shape) space. In this paper, we propose a principled framework based on the variational information bottleneck theory to relax these assumptions while predicting probabilistic shapes of anatomy directly from images without supervised encoding of shape descriptors. Here, the latent representation is learned in the context of the learning task, resulting in a more scalable, flexible model that better captures data non-linearity. Additionally, this model is self-regularized and generalizes better given limited training data. Our experiments demonstrate that the proposed method provides an accuracy improvement and better calibrated aleatoric uncertainty estimates than state-of-the-art methods.

6.
Shape Med Imaging (2020) ; 12474: 57-72, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33817703

ABSTRACT

Statistical shape modeling (SSM) has recently taken advantage of advances in deep learning to alleviate the need for a time-consuming and expert-driven workflow of anatomy segmentation, shape registration, and the optimization of population-level shape representations. DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images with little manual overhead. It performs comparably with state-of-the-art shape modeling methods for estimating morphologies that are viable for subsequent downstream tasks. Nonetheless, DeepSSM produces an overconfident estimate of shape that cannot be blindly assumed to be accurate. Hence, conveying what DeepSSM does not know, via quantifying granular estimates of uncertainty, is critical for its direct clinical application as an on-demand diagnostic tool to determine how trustworthy the model output is. Here, we propose Uncertain-DeepSSM as a unified model that quantifies both, data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variance, and model-dependent epistemic uncertainty via a Monte Carlo dropout sampling to approximate a variational distribution over the network parameters. Experiments show an accuracy improvement over DeepSSM while maintaining the same benefits of being end-to-end with little pre-processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...