Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766215

ABSTRACT

Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 µM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.

2.
J Chem Inf Model ; 64(10): 3992-4001, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38739914

ABSTRACT

Owing to the value of DNA-wrapped single-walled carbon nanotube (SWNT)-based sensors for chemically specific imaging in biology, we explore machine learning (ML) predictions DNA-SWNT serotonin sensor responsivity as a function of DNA sequence based on the whole SWNT fluorescence spectra. Our analysis reveals the crucial role of DNA sequence in the binding modes of DNA-SWNTs to serotonin, with a smaller influence of SWNT chirality. Regression ML models trained on existing data sets predict the change in the fluorescence emission in response to serotonin, ΔF/F, at over a hundred wavelengths for new DNA-SWNT conjugates, successfully identifying some high- and low-response DNA sequences. Despite successful predictions, we also show that the finite size of the training data set leads to limitations on prediction accuracy. Nevertheless, incorporating entire spectra into ML models enhances prediction robustness and facilitates the discovery of novel DNA-SWNT sensors. Our approaches show promise for identifying new chemical systems with specific sensing response characteristics, marking a valuable advancement in DNA-based system discovery.


Subject(s)
DNA , Machine Learning , Nanotubes, Carbon , Serotonin , Nanotubes, Carbon/chemistry , DNA/chemistry , Spectrometry, Fluorescence , Biosensing Techniques/methods , Base Sequence
3.
ACS Nano ; 16(1): 736-745, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34928575

ABSTRACT

DNA-wrapped single walled carbon nanotube (SWNT) conjugates have distinct optical properties leading to their use in biosensing and imaging applications. A critical limitation in the development of DNA-SWNT sensors is the current inability to predict unique DNA sequences that confer a strong analyte-specific optical response to these sensors. Here, near-infrared (nIR) fluorescence response data sets for ∼100 DNA-SWNT conjugates, narrowed down by a selective evolution protocol starting from a pool of ∼1010 unique DNA-SWNT candidates, are used to train machine learning (ML) models to predict DNA sequences with strong optical response to neurotransmitter serotonin. First, classifier models based on convolutional neural networks (CNN) are trained on sequence features to classify DNA ligands as either high response or low response to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative optical response values for DNA sequences. Finally, we demonstrate with validation experiments that integrating the predictions of ensembles of the highest quality neural network classifiers (convolutional or artificial) and SVM regression models leads to the best predictions of both high and low response sequences. With our ML approaches, we discovered five DNA-SWNT sensors with higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored ML approaches, shown to predict useful DNA sequences, can be used for discovery of DNA-based sensors and nanobiotechnologies.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Serotonin , Spectrometry, Fluorescence , DNA , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL