Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EuroIntervention ; 14(13): 1420-1427, 2019 Jan 20.
Article in English | MEDLINE | ID: mdl-29741484

ABSTRACT

AIMS: The present study aimed to investigate whether the Magmaris resorbable magnesium scaffold (RMS) has platelet-repelling properties by comparing its acute thrombogenicity with an equivalent stainless steel stent in an arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to Sylgard tubing containing the Magmaris RMS with sirolimus-eluting PLLA coating and an equivalent 316L stainless steel stent with sirolimus-eluting PLLA coating. Six shunts (two shunt runs per pig) were run comparing the two scaffolds (n=9) in alternating order. Nested generalised linear mixed models were employed to compare variables between scaffold groups. Confocal fluorescent microscopy containing CD61/CD42b demonstrated that the 316L equivalent stent had significantly greater platelet coverage of the total scaffold compared with Magmaris (5.8% vs. 2.8%, adjusted rate ratio 2.21 [1.41, 3.47], p=0.012). Scanning electron microscopy demonstrated significantly greater thrombus deposition on the 316L equivalent stent as a percentage of the total scaffold compared with Magmaris (8.0% vs. 5.3%, p=0.009). Magmaris also had significantly less CD14 positive monocyte deposition and a trend towards less PM-1 positive neutrophil compared with the 316L equivalent stent. CONCLUSIONS: Magmaris has less thrombogenicity and inflammatory cell deposition compared with the equivalent 316L stainless steel (in geometry and design) stent in a porcine arteriovenous shunt model. These data suggest that resorbable magnesium scaffolds may have inherent properties that reduce adhesion of platelets and inflammatory cells.


Subject(s)
Arteriovenous Fistula , Thrombosis , Animals , Magnesium , Stainless Steel , Stents , Swine
2.
Circ Cardiovasc Interv ; 10(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28801538

ABSTRACT

BACKGROUND: A comparison in acute thrombogenicity between the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold and the Absorb bioresorbable vascular scaffold has not been performed. This study assessed acute thrombogenicity of Magmaris compared with Absorb and the Orsiro hybrid drug-eluting stent in a porcine arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to SYLGARD tubing containing the Magmaris, Absorb, and Orsiro scaffolds/stents and allowed to run in the shunt for a maximum of 1 hour. Twelve shunts (2 shunt runs per pig) were run comparing the 3 scaffolds in alternating order. Nested generalized linear mixed models were used to compare variables between scaffold groups while adjusting for variability between shunt runs. Confocal fluorescent microscopy costaining CD61/CD42b demonstrated that both Magmaris (3.0%) and Orsiro (4.6%) had less platelet coverage of the total scaffold compared with Absorb (21.8%). Scanning electron microscopy demonstrated significantly less thrombus deposition to Magmaris as a percentage of the total scaffold compared with Absorb (5.0% versus 16.1%, P=0.02). Magmaris had significantly less PM-1-positive neutrophil and CD14-positive monocyte adherence compared with both Orsiro and Absorb. Orsiro had significantly less monocyte deposition compared with Absorb. CONCLUSIONS: Despite a similar scaffold strut thickness, the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold was significantly less thrombogenic compared with the Absorb bioresorbable vascular scaffold in an ex vivo porcine arteriovenous shunt model. Further studies are needed to determine whether the reduced thrombogenicity of Magmaris will result in reductions in major cardiovascular events.


Subject(s)
Drug-Eluting Stents/adverse effects , Magnesium , Thrombosis/etiology , Tissue Scaffolds/adverse effects , Animals , Cell Adhesion , Microscopy, Electron, Scanning , Swine , Thrombosis/pathology
3.
Am J Hum Genet ; 95(1): 66-76, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24975946

ABSTRACT

Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcification. Our findings connect multimodal genomics data with a commonly used clinical marker of cardiovascular disease.


Subject(s)
Calcinosis , Coronary Vessels/pathology , DNA/metabolism , Proteins/metabolism , RNA/metabolism , Receptors, Immunologic/physiology , Base Sequence , DNA Primers , HEK293 Cells , Humans , Quantitative Trait Loci , Receptors, Immunologic/genetics
4.
Arterioscler Thromb Vasc Biol ; 32(2): 299-307, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22095982

ABSTRACT

OBJECTIVE: We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explored whether reducing macrophage intracellular iron levels via pharmacological suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. METHODS AND RESULTS: To suppress hepcidin, increase expression of the iron exporter ferroportin, and reduce macrophage intracellular iron, we used a small molecule inhibitor of bone morphogenetic protein (BMP) signaling, LDN 193189 (LDN). LDN (10 mg/kg IP b.i.d.) was administered to mice, and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to apolipoprotein E-/- mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; P=0.03), reduced Oil Red O-positive lipid area by 50% (n=8; P=0.02), and decreased total plaque area by 43% (n=8; P=0.001). LDN suppressed liver hepcidin transcription and increased macrophage ferroportin, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1, and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. CONCLUSIONS: These data suggest that pharmacological manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis.


Subject(s)
Antimicrobial Cationic Peptides/antagonists & inhibitors , Atherosclerosis/prevention & control , Cell Differentiation/drug effects , Cholesterol/metabolism , Foam Cells/pathology , Macrophages/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/drug effects , Disease Models, Animal , Hepcidins , Iron/metabolism , Lipoproteins/metabolism , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...