Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 155: 111143, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32469768

ABSTRACT

Pollution of marine environments is concerning for complex trophic systems. Two anthropogenic stresses associated with marine pollution are the introduction of marine plastic and their associated chemicals (e.g., trace elements) which, when ingested, may cause harm to wildlife. Here we explore the relationship between plastic ingestion and trace element burden in the breast muscle of Short-tailed Shearwaters (Ardenna tenuirostris). We found no relationship between the amount of plastic ingested and trace element concentration in the birds' tissues. Though the mass and number of plastic items ingested by birds during 1969-2017 did not change significantly, trace element concentrations of some elements (Cu, Zn, As, Rb, Sr and Cd), appeared to have increased in birds sampled in 2017 compared to limited data from prior studies. We encourage policy which considers the data gleaned from this sentinel species to monitor the anthropogenic alteration of the marine environment.


Subject(s)
Plastics , Trace Elements , Animals , Birds , Eating , Environmental Monitoring
2.
Food Chem ; 299: 125140, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31299520

ABSTRACT

Pigment-depletion in the fillets of farmed Atlantic salmon (Salmo salar) arises after periods of elevated water temperatures with voluntary starving. This study tested the effects of dietary pre-loading with different pigment carotenoids (astaxanthin and/or canthaxanthin) combined with two α-tocopherol levels (normal and high: 500 and 1000 mg/kg, respectively) on pigment-depletion in vivo in Atlantic salmon after four weeks of challenge. We also tested whether oxidative stress manifested as an underlying depletion mechanism. Carotenoid levels in whole fillet homogenates were not decreased significantly post-challenge but fillet α-tocopherol concentrations were increased significantly in contrast to decreased oxidative stress indices. However, image analysis revealed localised fillet pigment-depletion following all dietary treatments. These data imply that localised pigment-depletion was not prevented by pre-loading of the fillet with different carotenoid-types/mixtures and increased of α-tocopherol levels from normal to high, respectively. Further, we suggest that oxidative stress might not facilitate pigment-depletion in vivo.


Subject(s)
Canthaxanthin/metabolism , Pigments, Biological/metabolism , Salmo salar/physiology , alpha-Tocopherol/metabolism , Animal Nutritional Physiological Phenomena , Animals , Aquaculture/methods , Canthaxanthin/analysis , Diet , Female , Fish Products/analysis , Oxidative Stress , Pigmentation , Starvation , Temperature , Xanthophylls/analysis , Xanthophylls/metabolism
3.
Conserv Physiol ; 7(1): coz017, 2019.
Article in English | MEDLINE | ID: mdl-31110767

ABSTRACT

Marine plastic pollution is increasing exponentially, impacting an expanding number of taxa each year across all trophic levels. Of all bird groups, seabirds display the highest plastic ingestion rates and are regarded as sentinels of pollution within their foraging regions. The consumption of plastic contributes to sub-lethal impacts (i.e. morbidity, starvation) in a handful of species. Additional data on these sub-lethal effects are needed urgently to better understand the scope and severity of the plastics issue. Here we explore the application of fatty acid (FA) analysis as a novel tool to investigate sub-lethal impacts of plastic ingestion on seabird body condition and health. Using gas chromatography-mass spectrometry, we identified 37 individual FAs within the adipose, breast muscle and liver of flesh-footed (Ardenna carneipes) and short-tailed (Ardenna tenuirostris) shearwaters. We found high amounts of FA 16:0, 18:0, 20:5n3 (eicosapentaenoic acid), 22:6n3 (docosahexaenoic acid) and 18:1n9 in both species; however, the overall FA composition of the two species differed significantly. In flesh-footed shearwaters, high amounts of saturated and mono-unsaturated FAs (needed for fast and slow release energy, respectively) in the adipose and muscle tissues were related to greater bird body mass. While total FAs were not related to the amount of plastic ingested in either species, these data are a valuable contribution to the limited literature on FAs in seabirds. We encourage studies to explore other analytical tools to detect these sub-lethal impacts of plastic.

4.
Article in English | MEDLINE | ID: mdl-23756212

ABSTRACT

Intraspecific analyses of the relationship between metabolic rate and mass have rarely been considered during complete ontogeny. Spiny lobsters are fascinating candidates to examine metabolic changes during ontogeny because their life cycle includes an extended planktonic, nektonic, and benthic life stages. The effect of body mass on metabolic rates, aerobic scope, and ammonia-N excretion of Sagmariasus verreauxi juveniles were examined to determine energetic demands through juvenile development. Mass-independent routine oxygen consumption increased allometrically during juvenile development with a mass scaling exponent of 0.83. The mass scaling exponent of active metabolism (0.81) was reduced compared to standard metabolism (0.91) of juvenile lobsters. The aerobic scope of juvenile lobsters decreased with larger body mass. To examine if the mass scaling exponent varies with ontogeny, we compared our data with previous measurements made with larvae of the same species. Comparison between mass scaling exponents showed they were higher for phyllosoma (0.97) compared to juvenile (0.83) development. Higher scaling exponents for phyllosoma may be attributed to increased growth rates of phyllosoma compared to juveniles, which increase oxygen consumption due to the higher energy cost of growth. The mass scaling exponent for complete ontogeny (0.91) of S. verreauxi was larger than the commonly cited 0.67 (1/3) and 0.75 (3/4) mass scaling exponents, indicating that species-specific differences can be a large factor affecting allometric relationships of animals.


Subject(s)
Ammonia/metabolism , Basal Metabolism , Body Weight , Nitrogen/metabolism , Palinuridae/growth & development , Palinuridae/metabolism , Aerobiosis , Animals , Body Size , Body Temperature/physiology , Oxygen Consumption/physiology , Palinuridae/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...