Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(15): 4151-4164, 2023 08.
Article in English | MEDLINE | ID: mdl-37212171

ABSTRACT

With continued global change, recovery of species listed under the Endangered Species Act is increasingly challenging. One rare success was the recovery and delisting of the Channel Island fox (Urocyon littoralis) after 90%-99% population declines in the 1990s. While their demographic recovery was marked, less is known about their genetic recovery. To address genetic changes, we conducted the first multi-individual and population-level direct genetic comparison of samples collected before and after the recent bottlenecks. Using whole-exome sequencing, we found that already genetically depauperate populations were further degraded by the 1990s declines and remain low, particularly on San Miguel and Santa Rosa Islands, which underwent the most severe bottlenecks. The two other islands that experienced recent bottlenecks (Santa Cruz, and Santa Catalina islands) showed mixed results based on multiple metrics of genetic diversity. Previous island fox genomics studies showed low genetic diversity before the declines and no change after the demographic recovery, thus this is the first study to show a decrease in genetic diversity over time in U. littoralis. Additionally, we found that divergence between populations consistently increased over time, complicating prospects for using inter-island translocation as a conservation tool. The Santa Catalina subspecies is now federally listed as threatened, yet other de-listed subspecies are still recovering genetic variation which may limit their ability to adapt to changing environmental conditions. This study further demonstrates that species conservation is more complex than population size and that some island fox populations are not yet 'out of the woods'.


Subject(s)
Foxes , Genomics , Animals , Foxes/genetics , Endangered Species , Population Density , Channel Islands , Genetic Variation/genetics
2.
Mol Ecol ; 32(12): 3089-3101, 2023 06.
Article in English | MEDLINE | ID: mdl-36934423

ABSTRACT

Anthropogenic changes have altered the historical distributions of many North American taxa. As environments shift, ecological and evolutionary processes can combine in complex ways to either stimulate or inhibit range expansion. Here, we examined the role of evolution in a rapid range expansion whose ecological context has been well-documented, Anna's Hummingbird (Calypte anna). Previous studies have suggested that the C. anna range expansion is the result of an ecological release facilitated by human-mediated environmental changes, where access to new food sources have allowed further filling of the abiotic niche. We examined the role of gene flow and adaptation during range expansion from their native California breeding range, north into Canada and east into New Mexico and Texas, USA. Using low coverage whole genome sequencing we found high genetic diversity, low divergence, and little evidence of selection on the northern and eastern expansion fronts. Additionally, there are no clear barriers to gene flow across the native and expanded range. The lack of selective signals between core and expanded ranges could reflect (i) an absence of novel selection pressure in the expanded range (supporting the ecological release hypothesis), (ii) swamping of adaptive variation due to high gene flow, or (iii) limitations of genome scans for detecting small shifts in allele frequencies across many loci. Nevertheless, our results provide an example where strong selection is not apparent during a rapid, contemporary range shift.


Subject(s)
Birds , Gene Flow , Animals , Humans , Birds/genetics , New Mexico , Texas , Breeding
3.
Front Microbiol ; 12: 748323, 2021.
Article in English | MEDLINE | ID: mdl-34925262

ABSTRACT

With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and examine the effects of geography and captivity on the variation in bacterial communities. Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.

4.
Mol Phylogenet Evol ; 127: 746-757, 2018 10.
Article in English | MEDLINE | ID: mdl-29908996

ABSTRACT

Vicariance and dispersal events affect current biodiversity patterns in desert springs. Whether major diversification events are due to environmental changes leading to radiation or due to isolation resulting in relict species is largely unknown. We seek to understand whether the Gammarus pecos species complex underwent major diversification events due to environmental changes in the area leading either to radiation into novel habitats, or formation of relicts due to isolation. Specifically, we tested the hypothesis that Gammarus in the northern Chihuahuan Desert of New Mexico and Texas, USA are descendants of an ancient marine lineage now containing multiple undescribed species. We sequenced a nuclear (28S) and two mitochondrial (16S, COI) genes from gammarid amphipods representing 16 desert springs in the northern Chihuahuan Desert. We estimated phylogenetic relationships, divergence times, and diversification rates of the Gammarus pecos complex. Our results revealed that the region contained two evolutionarily independent lineages: a younger Freshwater Lineage that shared a most-recent-common-ancestor with an older Saline Lineage ∼66.3  MYA (95.6-42.4  MYA). Each spring system generally formed a monophyletic clade based on the concatenated dataset. Freshwater Lineage diversification rates were 2.0-9.8 times higher than rates of the Saline Lineage. A series of post-Cretaceous colonizations by ancestral Gammarus taxa was likely followed by isolation. Paleo-geological, hydrological, and climatic events in the Neogene-to-Quaternary periods (23.03  MYA - present) in western North America promoted allopatric speciation of both lineages. We suggest that Saline Lineage populations include two undescribed Gammarus species, while the Freshwater Lineage shows repetition of fine-scale genetic structure in all major clades suggesting incipient speciation. Such ongoing speciation suggests that this region will continue to be a biodiversity hotspot for amphipods and other freshwater taxa.


Subject(s)
Amphipoda/physiology , Biodiversity , Fresh Water , Social Isolation , Amphipoda/genetics , Animals , Base Sequence , Bayes Theorem , Electron Transport Complex IV/genetics , Genetic Variation , Genetics, Population , Geography , Models, Theoretical , Paleontology , Phylogeny , Salinity , Texas
5.
Biochemistry ; 49(37): 8228-36, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20715794

ABSTRACT

Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5-2-fold increase in k(cat) and a decrease in K(m) as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and (1)H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme-substrate contacts, with tyrosine 255 being particularly important.


Subject(s)
Lactoylglutathione Lyase/metabolism , Metals/chemistry , Arabidopsis/enzymology , Arabidopsis/metabolism , Catalysis , Glutathione/analogs & derivatives , Histidine , Humans , Kinetics , Magnetic Resonance Spectroscopy , Metals/analysis , Substrate Specificity , Thiolester Hydrolases
6.
J Biol Inorg Chem ; 15(2): 249-58, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19834746

ABSTRACT

In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV-vis, EPR, and (1)H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)-Zn(II), and antiferromagnetically coupled Fe(II)-Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the fractionated species, depending on the number and type of metal ion present. Intriguingly, however, the catalytic efficiency constant, k(cat)/K(m), was invariant among the fractions. The value of k(cat)/K(m) governs the catalytic rate at low, physiological substrate concentrations. We suggest that the independence of k(cat)/K(m) on the precise makeup of the active-site metal center is evolutionarily related to the lack of selectivity for either Fe versus Zn(II) or Fe(II) versus Fe(III), in one or more metal binding sites.


Subject(s)
Biocatalysis , Iron/chemistry , Organometallic Compounds/chemistry , Thiolester Hydrolases/metabolism , Zinc/chemistry , Kinetics , Organometallic Compounds/metabolism , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/isolation & purification
7.
Biochemistry ; 48(23): 5426-34, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19413286

ABSTRACT

Human glyoxalase II (Glx2) was overexpressed in rich medium and in minimal medium containing zinc, iron, or cobalt, and the resulting Glx2 analogues were characterized using metal analyses, steady-state and pre-steady-state kinetics, and NMR and EPR spectroscopies to determine the nature of the metal center in the enzyme. Recombinant human Glx2 tightly binds nearly 1 equiv each of Zn(II) and Fe. In contrast to previous reports, this study demonstrates that an analogue containing 2 equiv of Zn(II) cannot be prepared. EPR studies suggest that most of the iron in recombinant Glx2 is Fe(II). NMR studies show that Fe(II) binds to the consensus Zn(2) site in Glx2 and that this site can also bind Co(II) and Ni(II), suggesting that Zn(II) binds to the consensus Zn(1) site. The NMR studies also reveal the presence of a dinuclear Co(II) center in Co(II)-substituted Glx2. Steady-state and pre-steady-state kinetic studies show that Glx2 containing only 1 equiv of Zn(II) is catalytically active and that the metal ion in the consensus Zn(2) site has little effect on catalytic activity. Taken together, these studies suggest that Glx2 contains a Fe(II)Zn(II) center in vivo but that the catalytic activity is due to Zn(II) in the Zn(1) site.


Subject(s)
Thiolester Hydrolases/chemistry , Zinc/chemistry , Binding Sites , Catalytic Domain , Cobalt/chemistry , Cobalt/metabolism , Electron Spin Resonance Spectroscopy , Humans , Iron/chemistry , Iron/metabolism , Kinetics , Models, Biological , Models, Molecular , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thiolester Hydrolases/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...