Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(13): 9877-9886, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38988656

ABSTRACT

Antimony selenide (Sb2Se3) has recently been intensively investigated and has achieved significant advancement in photoelectrochemical (PEC) water splitting. In this work, a facile one-step hydrothermal method for the preparation of Sn-doped Sb2Se3 photocathodes with improved PEC performance was investigated. We present an in-depth study of the performance enhancement in Sn-doped Sb2Se3 photocathodes using capacitance-voltage (CV), drive-level capacitance profiling (DLCP), and electrochemical impedance spectroscopy (EIS) techniques. The incorporation of Sn2+ into the Sb2Se3 results in increased carrier density, reduced surface defects, and improved charge separation, thereby leading to improved PEC performance. With a thin Sb2Se3 absorber layer (270 nm thickness), the Sn-doped Sb2Se3 photocathode exhibits an improved photocurrent density of 17.1 mA cm-2 at 0 V versus RHE (V RHE) compared to that of the undoped Sb2Se3 photocathode (14.4 mA cm-2). This work not only highlights the positive influence of Sn doping on Sb2Se3 photocathodes but also showcases a one-step method to synthesize doped Sb2Se3 with improved optoelectronic properties.

2.
Chemistry ; 30(19): e202304181, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38285807

ABSTRACT

Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.

3.
J Mater Chem A Mater ; 11(15): 8277-8284, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37066134

ABSTRACT

Antimony selenide (Sb2Se3) is an auspicious material for solar energy conversion that has seen rapid improvement over the past ten years, but the photovoltage deficit remains a challenge. Here, simple and low-temperature treatments of the p-n heterojunction interface of Sb2Se3/TiO2-based photocathodes for photoelectrochemical water splitting were explored to address this challenge. The FTO/Ti/Au/Sb2Se3 (substrate configuration) stack was treated with (NH4)2S as an etching solution, followed by CuCl2 treatment prior to deposition of the TiO2 by atomic layer deposition. The different treatments show different mechanisms of action compared to similar reported treatments of the back Au/Sb2Se3 interface in superstrate configuration solar cells. These treatments collectively increased the onset potential from 0.14 V to 0.28 V vs. reversible hydrogen electrode (RHE) and the photocurrent from 13 mA cm-2 to 18 mA cm-2 at 0 V vs. RHE as compared to the untreated Sb2Se3 films. From SEM and XPS studies, it is clear that the etching treatment induces a morphological change and removes the surface Sb2O3 layer, which eliminates the Fermi-level pinning that the oxide layer generates. CuCl2 further enhances the performance due to the passivation of the surface defects, as supported by density functional theory molecular dynamics (DFT-MD) calculations, improving charge separation at the interface. The simple and low-cost semiconductor synthesis method combined with these facile, low-temperature treatments further increases the practical potential of Sb2Se3 for large-scale water splitting.

4.
Chem Mater ; 35(6): 2371-2380, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008405

ABSTRACT

Cu2S is a promising solar energy conversion material due to its suitable optical properties, high elemental earth abundance, and nontoxicity. In addition to the challenge of multiple stable secondary phases, the short minority carrier diffusion length poses an obstacle to its practical application. This work addresses the issue by synthesizing nanostructured Cu2S thin films, which enables increased charge carrier collection. A simple solution-processing method involving the preparation of CuCl and CuCl2 molecular inks in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing was used to obtain phase-pure nanostructured (nanoplate and nanoparticle) Cu2S thin films. The photocathode based on the nanoplate Cu2S (FTO/Au/Cu2S/CdS/TiO2/RuO x ) reveals enhanced charge carrier collection and improved photoelectrochemical water-splitting performance compared to the photocathode based on the non-nanostructured Cu2S thin film reported previously. A photocurrent density of 3.0 mA cm-2 at -0.2 versus a reversible hydrogen electrode (V RHE) with only 100 nm thickness of a nanoplate Cu2S layer and an onset potential of 0.43 V RHE were obtained. This work provides a simple, cost-effective, and high-throughput method to prepare phase-pure nanostructured Cu2S thin films for scalable solar hydrogen production.

5.
Energy Environ Sci ; 15(5): 2002-2010, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35706422

ABSTRACT

Ammonia solution etching was carried out on thermally-oxidised cuprous oxide (TO-Cu2O) in photocathode devices for water splitting. The etched devices showed increased photoelectrochemical (PEC) performance compared to the unetched ones as well as improved reproducibility. -8.6 mA cm-2 and -7 mA cm-2 photocurrent density were achieved at 0 V and 0.5 V versus the reversible hydrogen electrode (VRHE), respectively, in the champion sample with an onset potential of 0.92 VRHE and a fill factor of 44%. An applied bias photon-to-current efficiency of 3.6% at 0.56 VRHE was obtained, which represents a new record for Cu2O-based photocathode systems. Capacitance-based profiling studies showed a strong pinning effect from interfacial traps in the as-grown device, and these traps were removed by ammonia solution etching. Moreover, the etching procedure gave rise to a diverse morphology of Cu2O crystals based on the different crystallographic orientations. The distribution of crystallographic orientations and the relationship between the crystal orientation and the morphology after etching were examined by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The high-index crystal group showed a statistically higher PEC performance than the low-index group. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) revealed metallic copper at the Cu2O/Ga2O3 interface, which we attribute as the dominant trap that limits the PEC performance. It is concluded that the metallic copper originates from the reduction of the CuO impurity layer on the as-grown Cu2O sample during the ALD process, while the reduction from Cu2O to Cu is not favourable.

6.
ChemSusChem ; 14(18): 3967-3974, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34324265

ABSTRACT

Cu2 S is a promising solar energy conversion material owing to its good optical properties, elemental earth abundance, and low cost. However, simple and cheap methods to prepare phase-pure and photo-active Cu2 S thin films are lacking. This study concerns the development of a cost-effective and high-throughput method that consists of dissolving high-purity commercial Cu2 S powder in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing to obtain phase-pure crystalline low chalcocite Cu2 S thin films. After coupling with a CdS buffer layer, a TiO2 protective layer and a RuOx hydrogen evolution catalyst, the champion Cu2 S photocathode gives a photocurrent density of 2.5 mA cm-2 at -0.3 V vs. reversible hydrogen electrode (VRHE ), an onset potential of 0.42 VRHE , and high stability over 12 h in pH 7 buffer solution under AM1.5 G simulated sunlight illumination (100 mW cm-2 ). This is the first thiol-amine-based ink deposition strategy to prepare phase-pure Cu2 S thin films achieving decent photoelectrochemical performance, which will facilitate its future scalable application for solar-driven hydrogen fuel production.

SELECTION OF CITATIONS
SEARCH DETAIL
...