Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 27(7): 1092-103, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24857813

ABSTRACT

The metabolic fate of a compound is determined by numerous factors including its chemical structure. Although the metabolic options for a variety of functional groups are well understood and can often provide a rationale for the comparison of toxicity based on structural analogy, at times quite minor structural variations may have major consequences for metabolic outcomes and toxicity. In this perspective, the effects of structural variations on metabolic outcomes is detailed for a group of related hydroxy- and alkoxy-substituted allyl- and propenylbenzenes. These classes of compounds are naturally occurring constituents of a variety of botanical-based food items. The classes vary from one another by the presence or absence of alkylation of their para-hydroxyl substituents and/or the position of the double bond in the alkyl side chain. We provide an overview of how these subtle structural variations alter the metabolism of these important food-borne compounds, ultimately influencing their toxicity, particularly their DNA reactivity and carcinogenic potential. The data reveal that detailed knowledge of the consequences of subtle structural variations for metabolism is essential for adequate comparison of structurally related chemicals. Taken together, it is concluded that predictions in toxicological risk assessment should not be performed on the basis of structural analogy only but should include an analogy of metabolic pathways across compounds and species.


Subject(s)
Benzene Derivatives , Carcinogens , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacokinetics , Benzene Derivatives/toxicity , Biotransformation , Carcinogens/chemistry , Carcinogens/pharmacokinetics , Carcinogens/toxicity , Humans
2.
Food Chem Toxicol ; 49(10): 2471-94, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21726592

ABSTRACT

This publication is the thirteenth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Since then, the number of flavoring substances has grown to more than 2600 substances. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of aliphatic and aromatic terpene hydrocarbons as flavoring ingredients are evaluated. The group of aliphatic and aromatic terpene hydrocarbons was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic potential.


Subject(s)
Flavoring Agents/analysis , Terpenes/analysis , Animals , Flavoring Agents/pharmacokinetics , Flavoring Agents/toxicity , Humans , Terpenes/pharmacokinetics , Terpenes/toxicity , Toxicity Tests/methods , United States
3.
Food Chem Toxicol ; 46(9): 2935-67, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18644420

ABSTRACT

This publication is the 12th in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Since then, the number of flavoring substances has grown to more than 2200 chemically-defined substances. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, toxicodynamics and toxicology. Scientific data relevant to the safety evaluation for the use of aliphatic, linear alpha,beta-unsaturated aldehydes and structurally related substances as flavoring ingredients are evaluated. The group of substances was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their low level of flavor use; the rapid absorption and metabolism of low in vivo concentrations by well-recognized biochemical pathways; adequate metabolic detoxication at much higher levels of exposure in humans and animals; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies. While some of the compounds described here have exhibited positive in vitro genotoxicity results, evidence of in vivo genotoxicity and carcinogenicity occurs only under conditions in which animals are repeatedly and directly exposed to high irritating concentrations of the aldehyde. These conditions are not relevant to humans who consume alpha,beta-unsaturated aldehydes as flavor ingredients at low concentrations distributed in a food or beverage matrix.


Subject(s)
Aldehydes/toxicity , Flavoring Agents/toxicity , Aldehydes/analysis , Aldehydes/chemistry , Aldehydes/pharmacokinetics , Animals , Carcinogens/analysis , Carcinogens/toxicity , Flavoring Agents/analysis , Flavoring Agents/chemistry , Flavoring Agents/pharmacokinetics , Food Analysis , Humans , Mutagens/analysis , Mutagens/toxicity , Reproduction/drug effects
4.
Food Chem Toxicol ; 45(2): 171-201, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17046133

ABSTRACT

This publication is the 11th in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. The list of GRAS substances has now grown to more than 2100 substances. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. In this monograph, a detailed interpretation is presented on the renal carcinogenic potential of the aromatic secondary alcohol alpha-methylbenzyl alcohol, aromatic ketone benzophenone, and corresponding alcohol benzhydrol. The relevance of these effects to the flavor use of these substances is also discussed. The group of aromatic substituted secondary alcohols, ketones, and related esters was reaffirmed as GRAS (GRASr) based, in part, on their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential.


Subject(s)
Alcohols/toxicity , Consumer Product Safety , Flavoring Agents/toxicity , Food Industry/standards , Ketones/toxicity , Alcohols/pharmacokinetics , Alcohols/standards , Animals , Benzophenones/pharmacokinetics , Benzophenones/standards , Benzophenones/toxicity , Esters , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Ketones/pharmacokinetics , Ketones/standards , No-Observed-Adverse-Effect Level , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacokinetics , Phenylethyl Alcohol/standards , Phenylethyl Alcohol/toxicity , Toxicity Tests , United States , United States Food and Drug Administration
5.
Food Chem Toxicol ; 43(8): 1179-206, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950814

ABSTRACT

This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of phenethyl alcohol, aldehyde, acid, and related acetals and esters as flavoring ingredients is evaluated. The group of phenethylalcohol, aldehyde, acid, and related acetals and esters was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food, their rapid absorption, metabolic detoxication, and excretion in humans and other animals, their low level of flavor use, the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of phenethyl alcohol, aldehyde, acid, and related acetals and esters as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Acetaldehyde/analogs & derivatives , Flavoring Agents/toxicity , Food Industry , Phenylacetates/toxicity , Phenylethyl Alcohol/toxicity , United States Food and Drug Administration/legislation & jurisprudence , Acetaldehyde/pharmacokinetics , Acetaldehyde/toxicity , Acetals , Animals , Esters , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Phenylacetates/pharmacokinetics , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacokinetics , Toxicity Tests , United States , United States Food and Drug Administration/standards
6.
Food Chem Toxicol ; 43(8): 1207-40, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950815

ABSTRACT

This publication is the eighth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of benzyl derivatives as flavoring ingredients is evaluated. The group of benzyl derivatives was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals, their low level of flavor use, the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Benzaldehydes/toxicity , Benzoic Acid/toxicity , Benzyl Alcohol/toxicity , Flavoring Agents/toxicity , Food Industry , United States Food and Drug Administration/legislation & jurisprudence , Animals , Benzaldehydes/pharmacokinetics , Benzoic Acid/pharmacokinetics , Benzyl Alcohol/pharmacokinetics , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Toxicity Tests , United States , United States Food and Drug Administration/standards
7.
Food Chem Toxicol ; 43(8): 1241-71, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15950816

ABSTRACT

This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of hydroxy- and alkoxy-substituted benzyl derivatives as flavoring ingredients is evaluated. The group of hydroxy- and alkoxy-benzyl derivatives was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of hydroxy- and alkoxy-substituted benzyl derivatives as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.


Subject(s)
Alcohols , Benzyl Compounds/toxicity , Flavoring Agents/toxicity , Food Industry , United States Food and Drug Administration/legislation & jurisprudence , Animals , Benzyl Compounds/pharmacokinetics , Flavoring Agents/pharmacokinetics , Flavoring Agents/standards , Humans , Toxicity Tests , United States , United States Food and Drug Administration/standards
8.
Food Chem Toxicol ; 43(3): 345-63, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15680674

ABSTRACT

A scientifically based guide has been developed to evaluate the safety of naturally occurring mixtures, particularly essential oils, for their intended use as flavor ingredients. The approach relies on the complete chemical characterization of the essential oil and the variability of the composition of the oil in the product intended for commerce. Being products of common plant biochemical pathways, the chemically identified constituents are organized according to a limited number of well-established chemical groups called congeneric groups. The safety of the intake of the each congeneric group from consumption of the essential oil is evaluated in the context of data on absorption, metabolism, and toxicology of members of the congeneric group. The intake of the group of unidentified constituents is evaluated in the context of the consumption of the essential oil as a food, a highly conservative toxicologic threshold, and toxicity data on the essential oil or an essential oil of similar chemotaxonomy. The flexibility of the guide is reflected in the fact that high intake of major congeneric groups of low toxicologic concern will be evaluated along with low intake of minor congeneric groups of significant toxicological concern (i.e., higher structural class). The guide also provides a comprehensive evaluation of all congeneric groups and constituents that account for the majority of the composition of the essential oil. The overall objective of the guide is to organize and prioritize the chemical constituents of an essential oil in order that no reasonably possible significant risk associated with the intake of essential oil goes unevaluated. The guide is, however, not intended to be a rigid checklist. The Flavor and Extract Manufacturers Association (FEMA) Expert Panel will continue to evaluate each essential oil on a case by case basis applying their scientific judgment to insure that each natural flavor complex is exhaustively evaluated.


Subject(s)
Consumer Product Safety , Flavoring Agents/adverse effects , Oils, Volatile/adverse effects , Animals , Drug Evaluation , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Industry , Food Technology , Humans , Oils, Volatile/analysis , Oils, Volatile/metabolism , United States
9.
Toxicol Lett ; 149(1-3): 197-207, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15093265

ABSTRACT

Natural flavour complexes (NFCs) are chemical mixtures obtained by applying physical separation methods to botanical sources. Many NFCs are derived from foods. In the present paper, a 12-step procedure for the safety evaluation of NFCs, 'the naturals paradigm', is discussed. This procedure, which is not intended to be viewed as a rigid check list, begins with a description of the chemical composition of the commercial product, followed by a review of the data on the history of dietary use. Next, each constituent of an NFC is assigned to one of 33 congeneric groups of structurally related substances and to one of three classes of toxic potential, each with its own exposure threshold of toxicological concern. The group of substances of unknown structure is placed in the class of greatest toxic potential. In subsequent steps, for each congeneric group the procedure determines the per capita intake, considers metabolic pathways and explores the need and availability of toxicological data. Additional toxicological and analytical data may be required for a comprehensive safety evaluation. The procedure concludes with an evaluation of the NFC in its entirety, also considering combined exposure to congeneric groups. The first experiences with the use of this procedure are very promising. Future safety evaluations of larger numbers of NFCs will indicate the usefulness of the system, either in its present form or in a form modified on the basis of experience.


Subject(s)
Biological Factors/toxicity , Flavoring Agents/toxicity , Animals , Biological Factors/adverse effects , Biological Factors/chemistry , Biological Factors/standards , Complex Mixtures/adverse effects , Complex Mixtures/chemistry , Complex Mixtures/standards , Complex Mixtures/toxicity , Elettaria/toxicity , Flavoring Agents/adverse effects , Flavoring Agents/chemistry , Flavoring Agents/standards , Humans , Plant Oils/toxicity
10.
Food Chem Toxicol ; 40(7): 851-70, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065208

ABSTRACT

This publication is the seventh in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavouring substances under conditions of intended use. In this review, scientific data relevant to the safety evaluation of the allylalkoxybenzene derivatives methyl eugenol and estragole is critically evaluated by the FEMA Expert Panel. The hazard determination uses a mechanism-based approach in which production of the hepatotoxic sulfate conjugate of the 1'-hydroxy metabolite is used to interpret the pathological changes observed in different species of laboratory rodents in chronic and subchronic studies. In the risk evaluation, the effect of dose and metabolic activation on the production of the 1'-hydroxy metabolite in humans and laboratory animals is compared to assess the risk to humans from use of methyl eugenol and estragole as naturally occurring components of a traditional diet and as added flavouring substances. Both the qualitative and quantitative aspects of the molecular disposition of methyl eugenol and estragole and their associated toxicological sequelae have been relatively well defined from mammalian studies. Several studies have clearly established that the profiles of metabolism, metabolic activation, and covalent binding are dose dependent and that the relative importance diminishes markedly at low levels of exposure (i.e. these events are not linear with respect to dose). In particular, rodent studies show that these events are minimal probably in the dose range of 1-10 mg/kg body weight, which is approximately 100-1000 times the anticipated human exposure to these substances. For these reasons it is concluded that present exposure to methyl eugenol and estragole resulting from consumption of food, mainly spices and added as such, does not pose a significant cancer risk. Nevertheless, further studies are needed to define both the nature and implications of the dose-response curve in rats at low levels of exposure to methyl eugenol and estragole.


Subject(s)
Eugenol/analogs & derivatives , Eugenol/toxicity , Flavoring Agents/toxicity , Animals , Biotransformation , Eugenol/chemistry , Eugenol/pharmacokinetics , Female , Flavoring Agents/chemistry , Flavoring Agents/pharmacokinetics , Humans
11.
Food Chem Toxicol ; 40(4): 429-51, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11893403

ABSTRACT

This is the fifth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually taking into account the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of pyrazine derivatives as flavoring ingredients is evaluated.


Subject(s)
Flavoring Agents/pharmacokinetics , Pyrazines/pharmacokinetics , Safety , Animals , Carcinogens/chemistry , Carcinogens/pharmacokinetics , Carcinogens/toxicity , Flavoring Agents/chemistry , Flavoring Agents/toxicity , Food Industry , Humans , Mice , Pyrazines/chemistry , Pyrazines/toxicity , Rats , Reference Values , Toxicity Tests
12.
Am J Orthod Dentofacial Orthop ; 120(2): 124-33, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11500653

ABSTRACT

The purpose of this retrospective study was to understand and predict the multidimensional changes in upper lip morphologic features after segmental (4-piece) maxillary Le Fort I advancement/impaction with VY closure and alar base cinch sutures. The study evaluated longitudinal lateral cephalograms of 57 patients (42 women, 15 men) 27.5 +/- 11.2 years of age before surgery. Lateral cephalograms with teeth in occlusion and lips in repose were taken 2 weeks before surgery and at least 6 months after the operation. Mean postsurgical duration was 15.5 months. The upper lip predictably moved anteriorly in a graduated fashion, from 50% (subnasale) to 90% (labrale superius) the amount of the underlying osseous anterior movement, and showed a slight lengthening (0.73 +/- 1.9 mm) from subnasale to upper lip stomion. The upper lip surface contour was also straightened as a result of the surgical movement. Multiple regression models showed that the anterior changes in the landmarks prosthion and facial surface of the upper incisor were the most important variables in predicting upper lip response. The prediction equations for horizontal movements explained 86% to 94% of the variation, with errors of the estimates that range between 1.27 mm and 1.65 mm. The models, when applied to an independent validation sample of 14 subjects, explained between 86% and 94% of the total variation. The conclusion is that upper lip response after 4-piece Le Fort I advancement/impaction (VY closure and alar base cinch suture) can be accurately predicted.


Subject(s)
Lip/anatomy & histology , Osteotomy, Le Fort , Adult , Cephalometry , Female , Forecasting , Humans , Male , Models, Biological , Osteotomy, Le Fort/methods , Prognosis , Regression Analysis , Retrospective Studies , Sex Factors , Statistics, Nonparametric
13.
Food Chem Toxicol ; 39(10): 999-1011, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11524138

ABSTRACT

The ability of furfural to induce unscheduled DNA synthesis (UDS) in hepatocytes of male and female B6C3F(1) mice and male F344 rats after in vivo administration and in vitro in precision-cut human liver slices has been studied. Preliminary toxicity studies established the maximum tolerated dose (MTD) of furfural to be 320 and 50 mg/kg in the mouse and rat, respectively. Furfural was dosed by gavage at levels of 0 (control), 50, 175 and 320 mg/kg to male and female mice and 0, 5, 16.7 and 50 mg/kg to male rats. Hepatocytes were isolated by liver perfusion either 2-4 h or 12-16 h after treatment, cultured in medium containing [3H]thymidine for 4 h and assessed for UDS by grain counting of autoradiographs. Furfural treatment did not produce any statistically significant increase or any dose-related effects on UDS in mouse and rat hepatocytes either 2-4 h or 12-16 h after dosing. In contrast, UDS was markedly induced in mice and rats 2-4 h after treatment with 20 mg/kg dimethylnitrosamine and 12-16 h after treatment of mice and rats with 200 mg/kg o-aminoazotoluene and 50 mg/kg 2-acetylaminofluorene (2-AAF), respectively. Precision-cut human liver slices from four donors were cultured for 24 h in medium containing [3H]thymidine and 0-10 mM furfural. Small increases in the net grain count (i.e. nuclear grain count less mean cytoplasmic grain count) observed with 2-10 mM furfural were not due to any increase in the nuclear grain count. Rather, it was the result of concentration-dependent decreases in the mean cytoplasmic grain counts and to a lesser extent in nuclear grain counts, due to furfural-induced cytotoxicity. In contrast, marked increases in UDS (both net grain and nuclear grain counts) were observed in human liver slices treated with 0.02 and 0.05 mM 2-AAF, 0.002 and 0.02 mM aflatoxin B(1) and 0.005 and 0.05 mM 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. This study demonstrates that furfural does not induce UDS in the hepatocytes of male and female B6C3F(1) mice and male F344 rats after oral treatment at doses up to the MTDs. Moreover, human liver slice studies suggest that furfural is also not a genotoxic agent in human liver.


Subject(s)
DNA Repair/drug effects , Furaldehyde/pharmacology , Hepatocytes/metabolism , Liver/metabolism , 2-Acetylaminofluorene/pharmacology , Animals , Carcinogens/pharmacology , Cells, Cultured , DNA/biosynthesis , DNA Replication/drug effects , Dimethylnitrosamine/pharmacology , Female , Hepatocytes/drug effects , Humans , In Vitro Techniques , Liver/drug effects , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , o-Aminoazotoluene/pharmacology
14.
J Am Coll Health ; 48(4): 165-73, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10650734

ABSTRACT

Wellness is commonly conceptualized as having many dimensions, but little effort has been made to evaluate how spiritual and psychological dimensions are related to overall wellness. To explore the relationship between measures of spiritual and psychological wellness and perceived wellness in a college student population, the authors administered a series of survey instruments to 112 undergraduate students under quiet classroom conditions. They used the Life Attitude Profile to measure spiritual wellness, the Life Orientation Test and the Sense of Coherence Scale to measure psychological wellness, and the Perceived Wellness Survey to measure overall wellness. Path analysis performed with a proposed theoretical model revealed that the effect of life purpose on perceived wellness was mediated by optimism and sense of coherence, which had independent effects on perceived wellness beyond that of life purpose. The findings suggested that an optimistic outlook and sense of coherence must be present for life purpose to enhance a sense of overall well-being.


Subject(s)
Health Status , Holistic Health , Students/psychology , Universities , Adolescent , Adult , Female , Humans , Male , Middle Aged , Models, Psychological , Student Health Services , Surveys and Questionnaires
15.
J Psychol ; 133(5): 495-513, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10507139

ABSTRACT

The purpose of this study was to evaluate the effectiveness of a traditional weight control program and nondiet alternative in improving behavioral (e.g., restrained, emotional, and external eating), psychological (e.g., body preoccupation, physical self-esteem), and biomedical (e.g., body weight, blood pressure, cholesterol) outcomes. There were 2 intervention groups--traditional weight control (TWC) and Diet Free Forever (DFF); a nonvolunteer comparison group; and a control group, all made up of employees of 3M (N = 357). The 2 intervention groups participated in 10-week eating programs. Outcome variables were assessed at baseline, at 10 weeks for the intervention groups only, and again at 1 year. At baseline, the 2 intervention groups had higher restrained, external, and emotional eating scores, greater body preoccupation, and lower physical self-esteem than the comparison and control groups. They also weighed more. At 1 year, both intervention groups had decreased their body preoccupation and increased their physical self-esteem. Participants in the DFF program reduced their restrained eating, whereas those in the TWC program increased their restrained eating. Neither eating program had an impact on the biomedical outcomes.


Subject(s)
Body Weight , Energy Intake , Adult , Affect/physiology , Body Image , Exercise , Female , Humans , Male , Self Concept
16.
Food Chem Toxicol ; 37(7): 789-811, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10496381

ABSTRACT

This publication is the fourth in a series of safety evaluations performed by the Expert Panel of the Flavour and Extract Manufacturers' Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavouring substances under conditions of intended use. In this review, scientific data relevant to the safety evaluation of trans-anethole (i.e. 4-methoxypropenylbenzene) as a flavouring substance is critically evaluated by the FEMA Expert Panel. The evaluation uses a mechanism-based approach in which production of the hepatotoxic metabolite anethole epoxide (AE) is used to interpret the pathological changes observed in different species and sexes of laboratory rodents in chronic and subchronic dietary studies. Female Sprague Dawley rats metabolize more trans-anethole to AE than mice or humans and, therefore, are the most conservative model for evaluating the potential for AE-induced hepatotoxicity in humans exposed to trans-anethole from use as a flavouring substance. At low levels of exposure, trans-anethole is efficiently detoxicated in rodents and humans primarily by O-demethylation and omega-oxidation, respectively, while epoxidation is only a minor pathway. At high dose levels in rats, particularly females, a metabolic shift occurs resulting in increased epoxidation and formation of AE. Lower activity of the "fast" acting detoxication enzyme epoxide hydrolase in the female is associated with more pronounced hepatotoxicity compared to that in the male. The continuous intake of high dose levels of trans-anethole (i.e. cumulative exposure) has been shown in dietary studies to induce a continuum of cytotoxicity, cell necrosis and cell proliferation. In chronic dietary studies in rats, hepatotoxicity was observed when the estimated daily hepatic production of AE exceeded 30 mg AE/kg body weight. In female rats, chronic hepatotoxicity and a low incidence of liver tumours were reported at a dietary intake of 550 mg trans-anethole/kg body weight/day. Under these conditions, daily hepatic production of AE exceeded 120 mg/kg body weight. Additionally, neither trans-anethole nor AE show any evidence of genotoxicity. Therefore, the weight of evidence supports the conclusion that hepatocarcinogenic effects in the female rat occur via a non-genotoxic mechanism and are secondary to hepatotoxicity caused by continuous exposure to high hepatocellular concentrations of AE. trans-Anethole was reaffirmed as GRAS (GRASr) based on (1) its low level of flavour intake (54 microg/kg body weight/day); (2) its metabolic detoxication pathway in humans at levels of exposure from use as a flavouring substance; (3) the lack of mutagenic or genotoxic potential; (4) the NOAEL of 120 mg trans-anethole/kg body weight/day in the female rat reported in a 2 + -year study which produces a level of AE (i.e. 22 mg AE/kg body weight/day) at least 10,000 times the level (0.002 mg AE/kg body weight day) produced from the intake of trans-anethole from use as a flavouring substance; and (5) the conclusion that a slight increase in the incidence of hepatocellular tumours in the high dose group (550 mg trans-anethole/kg body weight/day) of female rats was the only significant neoplastic finding in a 2+ -year dietary study. This finding is concluded to be secondary to hepatotoxicity induced by high hepatocellular concentrations of AE generated under conditions of the study. Because trans-anethole undergoes efficient metabolic detoxication in humans at low levels of exposure, the neoplastic effects in rats associated with dose-dependent hepatotoxicity are not indicative of any significant risk to human health from the use of trans-anethole as a flavouring substance.


Subject(s)
Anisoles/toxicity , Flavoring Agents/toxicity , Allylbenzene Derivatives , Animals , Anisoles/pharmacokinetics , Carcinogenicity Tests , Carcinogens/toxicity , Dealkylation , Enzyme Induction/drug effects , Epoxy Compounds/metabolism , Female , Flavoring Agents/pharmacokinetics , Humans , Lethal Dose 50 , Male , Mice , Mutagenicity Tests , Mutagens/toxicity , Oxidation-Reduction , Rats , Rats, Wistar
18.
Food Chem Toxicol ; 35(8): 739-51, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9350219

ABSTRACT

The Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA) has assessed the safety of furfural for its continued use as a flavour ingredient. The safety assessment takes into account the current scientific information on exposure, metabolism, pharmacokinetics, toxicology, carcinogenicity and genotoxicity. Furfural was reaffirmed as GRAS (GRASr) as a flavour ingredient under conditions of intended use based on: (1) its mode of metabolic detoxication in humans; (2) its low level of flavour use compared with higher intake levels as a naturally occurring component of food; (3) the safety factor calculated from results of subchronic and chronic studies, (4) the lack of reactivity with DNA; and (5) the conclusion that the only statistically significant finding in the 2-year NTP bioassays, an increased incidence of hepatocellular adenomas and carcinomas in the high-dose group of male mice, was secondary to pronounced hepatotoxicity. Taken together, these data do not indicate any risk to human health under conditions of use as a flavour ingredient. This evidence of safety is supported by the occurrence of furfural as a natural component of traditional foods, at concentrations in the diet resulting in a 'natural intake' that is at least 100 times higher than the intake of furfural from use as a flavour ingredient.


Subject(s)
Flavoring Agents , Food Additives/standards , Furaldehyde , Adenoma, Liver Cell/chemically induced , Adenoma, Liver Cell/pathology , Animals , Carcinogenicity Tests , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Drug Evaluation , Female , Flavoring Agents/chemistry , Flavoring Agents/pharmacokinetics , Flavoring Agents/toxicity , Furaldehyde/chemistry , Furaldehyde/pharmacokinetics , Furaldehyde/toxicity , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Mice , Mutagenicity Tests , Rats , Safety
19.
Food Chem Toxicol ; 34(9): 763-828, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8972877

ABSTRACT

For over 35 years, an independent panel of expert scientists has served as the primary body for evaluating the safety of flavour ingredients. This group, the Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA), has achieved international recognition from the flavour industry, government regulatory bodies including the Food and Drug Administration, and the toxicology community for its unique contributions. To date, the Expert Panel has evaluated the safety of more than 1700 flavour ingredients and determined the vast majority to be "generally recognized as safe" (GRAS). Elements that are fundamental to the safety evaluation of flavour ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavour ingredients are evaluated individually taking into account the available scientific information on the group of structurally related substances. The elements of the GRAS assessment program as they have been applied by the Expert Panel to the group of 119 alicyclic substances used as flavour ingredients, and the relevant scientific data which provide the basis for the GRAS status of these substances, are described herein.


Subject(s)
Flavoring Agents , Animals , Carcinogens , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Flavoring Agents/toxicity , Humans , Mutagens
20.
Am J Health Promot ; 11(1): 54-61, 1996.
Article in English | MEDLINE | ID: mdl-10163451

ABSTRACT

PURPOSE: To investigate the association between perceived stress and illness-related work absenteeism. DESIGN: A standardized health profile questionnaire developed by Johnson & Johnson Advanced Behavioral Technologies, Inc., was used to collect demographic and personal health data between June 1988 and January 1993. Chi-square, odds ratio, and stepwise regression tests were used to analyze perceived stress and self-reported absenteeism data. SETTING: Worksite health promotion programs in 250 U.S. companies. SUBJECTS: Subjects consisted of 79,070 employees. MEASURES: Stress data, grouped as low, moderate, and high, were correlated with absenteeism data grouped by annual days missed (None, 1 to 2, 3 to 4, and 5+). RESULTS: Significant relationships were found (p < or = .05) between high stress and absenteeism for both genders. Female workers reported higher stress levels and absenteeism than men. Those with high stress were 2.22 more likely to be absent 5+ days per year than those with low stress. Work, finances, and family were the highest stress sources. Greatest absenteeism predictors were health, legal, social, and financial stress. CONCLUSIONS: These data primarily represented self-selected white workers and may not apply to all employees. However, if high stress relates to absenteeism, these data may provide valuable information for program design in stress management.


Subject(s)
Absenteeism , Sick Leave , Stress, Psychological/epidemiology , Adult , Chi-Square Distribution , Confounding Factors, Epidemiologic , Female , Humans , Male , Middle Aged , Odds Ratio , Regression Analysis , Sex Distribution , Sick Leave/statistics & numerical data , Socioeconomic Factors , Surveys and Questionnaires , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...