Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Virol Methods ; 327: 114923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561124

ABSTRACT

This study describes the development and preliminary validation of a new serological assay using MERS-CoV S1 protein in an indirect enzyme-linked immunosorbent assay (ELISA) format. This assay has the advantage of being able to test MERS-CoV serum samples in a PC2 laboratory without the need for a high-level biocontainment laboratory (PC3 or PC4), which requires highly trained and skilled staff and a high level of resources and equipment. Furthermore, this MERS-CoV S1 ELISA enables a larger number of samples to be tested quickly, with results obtained in approximately five hours. The MERS-CoV S1 ELISA demonstrated high analytical specificity, with no cross-reactivity observed in serum of animals infected with other viruses, including different coronaviruses. We tested 166 positive and 40 negative camel serum samples and have estimated the diagnostic sensitivity (DSe) to be 99.4% (95% CI: 96.7 - 100.0%) and diagnostic specificity (DSp) to be 100% (95% CI: 97.2%-100.0%) relative to the assigned serology results (ppNT and VNT) using a S/P ratio cut-off value of >0.58. The findings of this study showed that our MERS-CoV S1 ELISA was more sensitive than the commercial EUROIMMUN ELISA (Se 99.4% vs 84.9%) and comparable to the ppNT assay, and therefore could be used as a diagnostic aid in countries in the Middle East where MERS-CoV is endemic in dromedary camels. The assay reagents and protocol were easily adapted and transferred from an Australian laboratory to a laboratory in the University of Hong Kong. Thus, the results described here show that the MERS-CoV S1 ELISA represents a cheap, rapid, robust, and reliable assay to support surveillance of MERS-CoV in camels in endemic regions.


Subject(s)
Antibodies, Viral , Camelids, New World , Camelus , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Middle East Respiratory Syndrome Coronavirus , Sensitivity and Specificity , Animals , Camelus/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Camelids, New World/virology , Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
2.
Surg Innov ; 30(6): 720-727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831491

ABSTRACT

BACKGROUND: Competition-based learning (CBL) facilitates learning through competitions. At the 2022 & 2023 Annual SAGES meetings, we evaluated a CBL experience (TOP GUN Shootout) developed from a modified version of the previously validated TOP GUN Laparoscopic Skills and Suturing Program. The project sought to evaluate the TOP GUN Shootout's (TGS) ability to enhance participant engagement in pursuit of laparoscopic surgical skills. METHODS: Participants competed in the TGS. Their scores (time and errors) were recorded for: Fundamentals of Laparoscopic Surgery Peg Pass, Cup Drop Task, and Intracorporeal Suturing. All participants completed a 10-question satisfaction survey on a 7-point Likert scale, with questions assessing 3 domains: (1) capability/confidence in MIS skill performance prior to the competition; (2) applicability and satisfaction with TGS's capacity to develop MIS skills; and (3) interest in seeking additional MIS training and appropriateness of CBL in MIS training. Descriptive statistics were used to evaluate these areas. RESULTS: Overall, 121 participants completed the TGS, of whom 84 (69%) completed the satisfaction survey. The average age was 32.9 years, 67% were males. On average (+/- SD), participant satisfaction was 5.04 (+/- 2.08) for Domain 1, 6.20 (+/- 1.28) for Domain 2, and 6.58 (+/- .95) for Domain 3. CONCLUSION: Participants described an overall lack of confidence in their MIS skills prior to the 2022-2023 Annual SAGES conference. Participants felt that this brief CBL experience, aided in the development of their MIS skills. Furthermore, this brief CBL experience may inspire learners to seek out further training of their MIS skills.


Subject(s)
Internship and Residency , Laparoscopy , Male , Humans , Adult , Female , Clinical Competence , Laparoscopy/education , Surveys and Questionnaires , Neurosurgical Procedures
3.
Pharmaceutics ; 15(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37242631

ABSTRACT

Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.

4.
ACS Chem Biol ; 18(1): 49-58, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36626717

ABSTRACT

Fatty acid and polyketide biosynthetic enzymes exploit the reactivity of acyl- and malonyl-thioesters for catalysis. A prime example is FabH, which initiates fatty acid biosynthesis in many bacteria and plants. FabH performs an acyltransferase reaction with acetyl-CoA to generate an acetyl-S-FabH acyl-enzyme intermediate and subsequent decarboxylative Claisen-condensation with a malonyl-thioester carried by an acyl carrier protein (ACP). We envision that crystal structures of FabH with substrate analogues can provide insight into the conformational changes and enzyme/substrate interactions underpinning the distinct reactions. Here, we synthesize acetyl/malonyl-CoA analogues with esters or amides in place of the thioester and characterize their stability and behavior as Escherichia coli FabH substrates or inhibitors to inform structural studies. We also characterize the analogues with mutant FabH C112Q that mimics the acyl-enzyme intermediate allowing dissection of the decarboxylation reaction. The acetyl- and malonyl-oxa(dethia)CoA analogues undergo extremely slow hydrolysis in the presence of FabH or the C112Q mutant. Decarboxylation of malonyl-oxa(dethia)CoA by FabH or C112Q mutant was not detected. The amide analogues were completely stable to enzyme activity. In enzyme assays with acetyl-CoA and malonyl-CoA (rather than malonyl-ACP) as substrates, acetyl-oxa(dethia)CoA is surprisingly slightly activating, while acetyl-aza(dethia)CoA is a moderate inhibitor. The malonyl-oxa/aza(dethia)CoAs are inhibitors with Ki's near the Km of malonyl-CoA. For comparison, we determine the FabH catalyzed decomposition rates for acetyl/malonyl-CoA, revealing some fundamental catalytic traits of FabH, including hysteresis for malonyl-CoA decarboxylation. The stability and inhibitory properties of the substrate analogues make them promising for structure-function studies to reveal fatty acid and polyketide enzyme/substrate interactions.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Polyketides , Acetyl Coenzyme A/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Acyl Carrier Protein/chemistry , Malonyl Coenzyme A/metabolism , Fatty Acids
5.
Theranostics ; 12(16): 6915-6930, 2022.
Article in English | MEDLINE | ID: mdl-36276654

ABSTRACT

Rationale: An antibody-drug conjugate (ADC) is a targeted therapy consisting of a cytotoxic payload that is linked to an antibody which targets a protein enriched on malignant cells. Multiple ADCs are currently used clinically as anti-cancer agents significantly improving patient survival. Herein, we evaluated the rationale of targeting the cell surface oncoreceptor CUB domain-containing protein 1 (CDCP1) using ADCs and assessed the efficacy of CDCP1-directed ADCs against a range of malignant tumors. Methods: CDCP1 mRNA expression was evaluated using large transcriptomic datasets of normal/tumor samples for 23 types of cancer and 15 other normal organs, and CDCP1 protein expression was examined in 34 normal tissues, >300 samples from six types of cancer, and in 49 cancer cell lines. A recombinant human/mouse chimeric anti-CDCP1 antibody (ch10D7) was labelled with 89Zirconium or monomethyl auristatin E (MMAE) and tested in multiple pre-clinical cancer models including 36 cancer cell lines and three mouse xenograft models. Results: Analysis of CDCP1 expression indicates elevated CDCP1 expression in the majority of the cancers and restricted expression in normal human tissues. Antibody ch10D7 demonstrates a high affinity and specificity for CDCP1 inducing cell signalling via Src accompanied by rapid internalization of ch10D7/CDCP1 complexes in cancer cells. 89Zirconium-labelled ch10D7 accumulates in CDCP1 expressing cells enabling detection of pancreatic cancer xenografts in mice by PET imaging. Cytotoxicity of MMAE-labelled ch10D7 against kidney, colorectal, lung, ovarian, pancreatic and prostate cancer cells in vitro, correlates with the level of CDCP1 on the plasma membrane. ch10D7-MMAE displays robust anti-tumor effects against mouse xenograft models of pancreatic, colorectal and ovarian cancer. Conclusion: CDCP1 directed imaging agents will be useful for selecting cancer patients for personalized treatment with cytotoxin-loaded CDCP1 targeting agents including antibody-drug conjugates.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Immunoconjugates , Male , Female , Humans , Animals , Mice , Immunoconjugates/pharmacology , Zirconium , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cytotoxins , RNA, Messenger , Antigens, Neoplasm , Cell Adhesion Molecules
6.
J Gen Virol ; 103(8)2022 08.
Article in English | MEDLINE | ID: mdl-35972225

ABSTRACT

Bats have been implicated as the reservoir hosts of filoviruses in Africa, with serological evidence of filoviruses in various bat species identified in other countries. Here, serum samples from 190 bats, comprising 12 different species, collected in Australia were evaluated for filovirus antibodies. An in-house indirect microsphere assay to detect antibodies that cross-react with Ebola virus (Zaire ebolavirus; EBOV) nucleoprotein (NP) followed by an immunofluorescence assay (IFA) were used to confirm immunoreactivity to EBOV and Reston virus (Reston ebolavirus; RESTV). We found 27 of 102 Yinpterochiroptera and 19 of 88 Yangochiroptera samples were positive to EBOV NP in the microsphere assay. Further testing of these NP positive samples by IFA revealed nine bat sera that showed binding to ebolavirus-infected cells. This is the first report of filovirus-reactive antibodies detected in Australian bat species and suggests that novel filoviruses may be circulating in Australian bats.


Subject(s)
Chiroptera , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Antibodies, Viral , Australia , Hemorrhagic Fever, Ebola/veterinary , Nucleoproteins
7.
Mol Pharm ; 18(9): 3464-3474, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34448393

ABSTRACT

Optimal cytoreduction for ovarian cancer is often challenging because of aggressive tumor biology and advanced stage. It is a critical issue since the extent of residual disease after surgery is the key predictor of ovarian cancer patient survival. For a limited number of cancers, fluorescence-guided surgery has emerged as an effective aid for tumor delineation and effective cytoreduction. The intravenously administered fluorescent agent, most commonly indocyanine green (ICG), accumulates preferentially in tumors, which are visualized under a fluorescent light source to aid surgery. Insufficient tumor specificity has limited the broad application of these agents in surgical oncology including for ovarian cancer. In this study, we developed a novel tumor-selective fluorescent agent by chemically linking ICG to mouse monoclonal antibody 10D7 that specifically recognizes an ovarian cancer-enriched cell surface receptor, CUB-domain-containing protein 1 (CDCP1). 10D7ICG has high affinity for purified recombinant CDCP1 and CDCP1 that is located on the surface of ovarian cancer cells in vitro and in vivo. Our results show that intravenously administered 10D7ICG accumulates preferentially in ovarian cancer, permitting visualization of xenograft tumors in mice. The data suggest CDCP1 as a rational target for tumor-specific fluorescence-guided surgery for ovarian cancer.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cell Adhesion Molecules/antagonists & inhibitors , Fluorescent Dyes/administration & dosage , Optical Imaging/methods , Ovarian Neoplasms/diagnosis , Animals , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Humans , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Injections, Intravenous , Mice , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
Chem Sci ; 12(26): 9004-9016, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34276928

ABSTRACT

Identification of tumors which over-express Epidermal Growth Factor Receptor (EGFR) is important in selecting patients for anti-EGFR therapies. Enzymatic bioconjugation was used to introduce positron-emitting radionuclides (89Zr, 64Cu) into an anti-EGFR antibody fragment for Positron Emission Tomography (PET) imaging the same day as injection. A monovalent antibody fragment with high affinity for EGFR was engineered to include a sequence that is recognized by the transpeptidase sortase A. Two different metal chelators, one for 89ZrIV and one for 64CuII, were modified with a N-terminal glycine to enable them to act as substrates in sortase A mediated bioconjugation to the antibody fragment. Both fragments provided high-quality PET images of EGFR positive tumors in a mouse model at 3 hours post-injection, a significant advantage when compared to radiolabeled full antibodies that require several days between injection of the tracer and imaging. The use of enzymatic bioconjugation gives reproducible homogeneous products with the metal complexes selectively installed on the C-terminus of the antibody potentially simplifying regulatory approval.

9.
Biosens Bioelectron ; 192: 113496, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34274623

ABSTRACT

Electrochemical devices for transdermal monitoring of key biomarkers are the potential next frontier of wearable technologies for point-of-care disease diagnosis, including Cancer in which Cancer is the leading cause of death worldwide with estimated 10 million deaths in 2018 according to the World Health Organization and breast cancer is one of the five most common causes of cancer death with over two million cases recorded in 2018. Early diagnosis and prognosis based on monitoring of breast cancer biomarkers is of high importance. In this work, high-density gold coated silicon microneedle arrays (Au-Si-MNA) were simultaneously used as biomarker extraction platform and electrochemical transducer, enabling the selective immunocapture of epidermal growth factor receptor 2 (ErbB2), a key breast cancer biomarker, and its subsequent quantification. The analytical performance of the device was tested in artificial interstitial fluid exhibiting a linear response over a wide concentration range from 10 to 250 ng/mL, with a detection limit of 4.8 ng/mL below the biomarker levels expected in breast cancer patients. As a proof of concept, the immunosensor demonstrated its ability to successfully extract ErbB2 from a phantom gel mimicking the epidermis and dermis layers, and subsequently quantify it showing a linear range from 50 to 250 ng/mL and a detection limit of 25 ng/mL. The uniqueness of this sensing platform combining direct transdermal biomarker extraction and quantification opens up new avenues towards the development of high performing wearable point-of-care devices.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Metal Nanoparticles , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Electrochemical Techniques , Female , Gold , Humans , Immunoassay , Limit of Detection , Silicon
10.
Sci Rep ; 11(1): 5247, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664348

ABSTRACT

Puromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity. Single-residue mutations were identified that displayed a range of enzymatic activities, from complete ablation to enhanced activity relative to wild-type (WT) PAC. Cell pools of stably transfected HEK293 cells derived using two PAC mutants with attenuated activity, Y30F and A142D, were found to secrete up to three-fold higher levels of a soluble, recombinant target protein than corresponding pools derived with the WT enzyme. A third mutant, Y171F, appeared to stabilise the intracellular turnover of PAC, resulting in an apparent loss of selection stringency. Our results indicate that the structure-guided manipulation of PAC function can be utilised to enhance selection stringency for the derivation of mammalian cell lines secreting elevated levels of recombinant proteins.


Subject(s)
Acetyl Coenzyme A/chemistry , Acetyltransferases/ultrastructure , Recombinant Proteins/ultrastructure , Streptomyces/ultrastructure , Acetyl Coenzyme A/genetics , Acetylation , Acetyltransferases/chemistry , Acetyltransferases/genetics , Animals , Catalytic Domain/genetics , Cell Line , Crystallography, X-Ray , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Mutation/genetics , Puromycin/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Streptomyces/enzymology
11.
Heliyon ; 6(6): e04115, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32518853

ABSTRACT

Regulation of type-I interferon (IFN) production is essential to the balance between antimicrobial defence and autoimmune disorders. The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains, previously C6orf106) was recently characterised as an inhibitor of antiviral and proinflammatory cytokine (interferon-alpha/beta and tumor necrosis factor alpha) transcription. Currently there is a paucity of information about the molecular characteristics of ILRUN, despite it being associated with several diseases including virus infection, coronary artery disease, obesity and cancer. Here, we characterise ILRUN as a highly phylogenetically conserved protein containing UBA-like and a NBR1-like domains that are both essential for inhibition of type-I interferon and tumor necrosis factor alpha) transcription in human cells. We also solved the crystal structure of the NBR1-like domain, providing insights into its potential role in ILRUN function. This study provides critical information for future investigations into the role of ILRUN in health and disease.

12.
Vaccine ; 38(22): 3892-3901, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32284273

ABSTRACT

Virus-like particles (VLP) represent biological platforms for the development of novel products such as vaccines and delivery platforms for foreign antigenic sequences. VLPs composed of the small surface antigen (HBsAgS) derived from the hepatitis B virus (HBV) are the immunogenic components of a licensed, preventative vaccine, which contains aluminum hydroxide as adjuvant. Herein, we report that glycoengineering of N-glycosylated HBsAgS to generate hyper-glycosylated VLPs display an enhanced immunogenicity relative to the wild type (WT) HBsAgS VLPs when expressed in FreeStyle HEK 293F cells. Comparative mass spectrometry-based N-glycan profiling, gel electrophoresis, and immunoassays demonstrated that WT and hyper-glycosylated HBsAgS VLPs contain the same type and distribution of N-glycan structures, but the latter shows a higher glycan abundance per protein mass. The antigenic integrity of the modified VLPs was also shown to be retained. To assess whether hyper-glycosylated VLPs induce an enhanced immune response in the presence of the adjuvant aluminum hydroxide, the anti-HBV surface antigen (anti-HBsAgS) antibody response was monitored in BALB/c mice, subcutaneously injected with different VLP derivatives. In the absence and presence of adjuvant, hyper-glycosylated VLPs showed an enhanced immunogenicity compared to WT VLPs. The ability of hyper-glycosylated VLPs to promote potent anti-HBsAgS immune responses compared to VLPs with a native N-glycan level as well as non-glycosylated, yeast-derived HBsAgS VLPs opens exciting avenues for generating more efficacious VLP-based vaccines against hepatitis B and improved HBsAgS VLP carrier platforms using glycoengineering.


Subject(s)
Hepatitis B Vaccines/immunology , Hepatitis B/prevention & control , Immunogenicity, Vaccine , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Hepatitis B Antibodies/blood , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Mice , Mice, Inbred BALB C
13.
Front Immunol ; 10: 1967, 2019.
Article in English | MEDLINE | ID: mdl-31507595

ABSTRACT

Human CD52 is a small glycopeptide (12 amino acid residues) with one N-linked glycosylation site at asparagine 3 (Asn3) and several potential O-glycosylation serine/threonine sites. Soluble CD52 is released from the surface of activated T cells and mediates immune suppression via its glycan moiety. In suppressing activated T cells, it first sequesters the pro-inflammatory high mobility group Box 1 (HMGB1) protein, which facilitates its binding to the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor. We aimed to identify the features of CD52 glycan that underlie its bioactivity. Analysis of native CD52 purified from human spleen revealed extensive heterogeneity in N-glycosylation and multi-antennary sialylated N-glycans with abundant polyLacNAc extensions, together with mainly di-sialylated O-glycosylation type structures. Glycomic (porous graphitized carbon-ESI-MS/MS) and glycopeptide (C8-LC-ESI-MS) analysis of recombinant soluble human CD52-immunoglobulin Fc fusion proteins revealed that CD52 bioactivity was correlated with a high abundance of tetra-antennary α-2,3/6 sialylated N-glycans. Removal of α-2,3 sialylation abolished bioactivity, which was restored by re-sialylation with α-2,3 sialyltransferases. When glycoforms of CD52-Fc were fractionated by anion exchange MonoQ-GL chromatography, bioactive fractions displayed mainly tetra-antennary, α-2,3 sialylated N-glycan structures and a lower relative abundance of bisecting GlcNAc structures compared to non-bioactive fractions. In addition, O-glycan core type-2 di-sialylated structures at Ser12 were more abundant in bioactive CD52 fractions. Understanding the structural features of CD52 glycan required for its bioactivity will aid its development as an immunotherapeutic agent.


Subject(s)
CD52 Antigen/immunology , CD52 Antigen/metabolism , Immunomodulation , CD52 Antigen/blood , CD52 Antigen/isolation & purification , Chromatography, Ion Exchange , Enzyme-Linked Immunosorbent Assay , Glycosylation , Humans , Polysaccharides/metabolism , Recombinant Proteins , Spleen/immunology , Spleen/metabolism
14.
Nature ; 574(7776): 63-68, 2019 10.
Article in English | MEDLINE | ID: mdl-31554967

ABSTRACT

The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.


Subject(s)
Cytokine Receptor gp130/metabolism , Cytokines/chemical synthesis , Cytokines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Immunoglobulin G/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Animals , Binding, Competitive , Cytokines/chemistry , Diabetes Mellitus, Type 2/metabolism , Drug Design , Fatty Liver/prevention & control , Glucose Tolerance Test , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Incretins/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mice , Muscle, Skeletal/drug effects , Obesity/metabolism , Pancreas/metabolism , Phosphoproteins/metabolism , Protein Engineering , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors , Weight Gain/drug effects , YAP-Signaling Proteins
15.
Bioconjug Chem ; 30(10): 2539-2543, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31560523

ABSTRACT

The functionalization of proteins with different cargo molecules is highly desirable for a broad range of applications. However, the reproducible production of defined conjugates with multiple functionalities is a significant challenge. Herein, we report the dual site-specific labeling of an antibody fragment, utilizing the orthogonal Sortase A and π-clamp conjugation methods, and demonstrate that binding of the antibody fragment to its target receptor is retained after dual labeling.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/metabolism , Binding Sites , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Ligands , Staining and Labeling
16.
Neuro Oncol ; 21(8): 1016-1027, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31002307

ABSTRACT

BACKGROUND: Although epidermal growth factor receptor (EGFR) and its truncated, autoactive mutant EGFR variant (v)III are bona fide drivers of tumorigenesis in some gliomas, therapeutic antibodies developed to neutralize this axis have not improved patient survival in a limited number of trials. Previous studies using cells transduced to exogenously express EGFRvIII may have compromised mechanistic studies of anti-EGFR therapeutics. Therefore, we re-assessed the activity of clinical EGFR antibodies in patient-derived gliomaspheres that endogenously express EGFRvIII. METHODS: The antitumor efficacy of antibodies was assessed using in vitro proliferation assays and intracranial orthografts. Receptor activation status, antibody engagement, oncogenic signaling, and mechanism of action after antibody treatment were analyzed by immunoprecipitation and western blotting. Tracking of antibody receptor complexes was conducted using immunofluorescence. RESULTS: The EGFR domain III-targeting antibodies cetuximab, necitumumab, nimotuzumab, and matuzumab did not neutralize EGFRvIII activation. Chimeric monoclonal antibody 806 (ch806) neutralized EGFRvIII, but not wild-type (wt)EGFR activation. Panitumumab was the only antibody that neutralized both EGFRvIII and wtEGFR, leading to reduction of p-S6 signaling and superior in vitro and in vivo antitumor activity. Mechanistically, panitumumab induced recycling of receptor but not degradation as previously described. Panitumumab, via its unique avidity, stably cross-linked EGFRvIII to prevent its activation, while ch806 induced a marked reduction in the active EGFRvIII disulphide-bonded dimer. CONCLUSIONS: We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII. The superior in vitro and in vivo antitumor activity of panitumumab supports further clinical testing of this antibody against EGFRvIII-stratified glioma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , ErbB Receptors , Glioma , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , Glioma/drug therapy , Humans , Signal Transduction
17.
Mol Cancer Ther ; 18(2): 335-345, 2019 02.
Article in English | MEDLINE | ID: mdl-30413648

ABSTRACT

Antibody-drug conjugates (ADC) have revolutionized the field of cancer therapy. ADCs combine the high specificity of tumor-targeting monoclonal antibodies with potent cytotoxic drugs, which cannot be used alone because of their high toxicity. Till date, all ADCs have either targeted cell membrane proteins on tumors or the tumor vasculature and microenvironment. Here, we investigate ADCs of APOMAB (DAB4, or its chimeric derivative, chDAB4), which is a mAb targeting the La/SSB protein, which is only accessible for binding in dying or dead cancer cells. We show that DAB4-labeled dead cells are phagocytosed by macrophages, and that the apoptotic/necrotic areas within lung tumor xenografts are bound by DAB4 and are infiltrated with macrophages. We show that only DAB4-ADCs with a cleavable linker and diffusible drug are effective in two lung cancer models, particularly when given after chemotherapy. These results are consistent with other recent studies showing that direct internalization of ADCs by target cells is not essential for ADC activity because the linker can be cleaved extracellularly or through other mechanisms. Rather than targeting a tumor cell type specific antigen, DAB4-ADCs have the advantage of targeting a common trait in most solid tumors: an excess of post-apoptotic, necrotic cells either adjacent to hypoxic tumor regions or distributed more generally after cytotoxic therapy. Consequently, any antitumor effects are solely the result of bystander killing, either through internalization of the dead, ADC-bound tumor cells by macrophages, or extracellular cleavage of the ADC in the tumor microenvironment.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoconjugates/administration & dosage , Lung Neoplasms/drug therapy , Macrophages/metabolism , A549 Cells , Animals , Apoptosis , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Lung Neoplasms/metabolism , Mice , Phagocytosis , RAW 264.7 Cells , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
18.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30567986

ABSTRACT

There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarctos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a ß-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.


Subject(s)
Gammaherpesvirinae/genetics , Marsupialia/virology , Phascolarctidae/virology , Pyrophosphatases/genetics , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Animals , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , Transcriptome/genetics
19.
Vet Microbiol ; 228: 252-258, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30593375

ABSTRACT

Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes upper respiratory tract disease in chickens and significant losses to the poultry industry worldwide. Both antibody and cell-mediated responses are generated against ILTV infection; however, the correlation of humoral immune response with protection against ILTV infection is debatable. To examine if whether antibody responses to individual ILTV glycoproteins are correlated with disease and protection, four ILTV glycoproteins (gD, gE, gG and gJ) were expressed as recombinant proteins and used in conjunction with commercially available recombinant gC and gI in indirect ELISAs to measure post-vaccination and/or post-challenge chicken serum antibodies. Serum optical density (OD) values detected by the whole virus, gC, gI and gJ were significantly higher in birds vaccinated with the Serva vaccine strain compared to the SA2 vaccine strain. However, the mean ODs detected by gD, gE and gG were not significantly different between the vaccine strains. Examination of post-ILTV vaccination sera found that gE was the most antigenic glycoprotein and that gC ODs were strongly correlated with those of gI and gJ, while ODs to gG had a relatively poor correlation with those of other glycoproteins. Moderate to poor correlations were found between microscopic tracheal lesion scores and ODs to individual glycoproteins. Examination of post-vaccination pre-challenge antibodies to individual glycoproteins did not find a strong correlation with protective immunity as measured by the severity of clinical signs, gross lesions, and tracheal viral load. Results from this study demonstrated that systemic antibody titers to individual ILTV glycoproteins C, D, E, G, I and J had a relatively poor correlation to protective immunity.


Subject(s)
Antibodies, Viral/blood , Chickens/immunology , Herpesvirus 1, Gallid/immunology , Membrane Glycoproteins/immunology , Poultry Diseases/immunology , Viral Vaccines/immunology , Animals , Chickens/virology , Enzyme-Linked Immunosorbent Assay/veterinary , HEK293 Cells , Humans , Immunity, Humoral , Membrane Glycoproteins/genetics , Membrane Glycoproteins/isolation & purification , Poultry Diseases/virology , Vaccination/veterinary , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/isolation & purification
20.
ACS Omega ; 3(10): 13195-13199, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30411029

ABSTRACT

We report the synthesis of two water-soluble BODIPY dyes with far-red absorption and near-infrared fluorescence following cell membrane insertion. Introduction of dicationic or dianionic groups imparts water solubility and prevents translocation of the dye through the plasma membrane for highly effective labeling. The dicationic form is particularly well localized to the plasma membrane and resists quenching even after >8 min of continuous light exposure. The dyes are almost completely nonemissive in water and other highly polar solvents, but display high-fluorescence yields in chloroform and upon insertion into the extracellular leaflet.

SELECTION OF CITATIONS
SEARCH DETAIL
...